Optimization of Solving the Vehicle Routing Problem with Time Windows in Multiple Product and Multiple Route Distribution
(Case Study: PT Subang Mulya Sejahtera)

Hally Hanafiah1, Prihantina Ardaniswarie2, Fajar Ardhy Tri Susilo3, & Dedi Rianto Rahadi4
2,3 Institut Teknologi Sepuluh November, Surabaya, Jawa Timur
1,4 Universitas Presiden, Cikarang, Kabupaten Bekasi, Jawa Barat, Indonesia
DOI – http://doi.org/10.37502/IJSMR.2024.7503

Abstract

The Fast-Moving Consumer Goods (FMCG) industry is faced with distribution complexity with a diversity of products and delivery routes (Multiple Products and Multiple Routes). PT Subang Mulya Sejahtera, part of the WINGS Group, is an FMCG company with distribution in Subang and Indramayu Regencies, serving 7,960 customers. To increase operational efficiency, companies need to optimize the resolution of Vehicle Routing Problem with Time Windows (VRPTW). Meeting needs on time requires significant costs in distribution. This research aims to develop an accurate mathematical model, considering vehicle capacity limitations, time windows, and variations in customer needs. In addition, the solution is integrated in the company’s information technology system to support VRPTW implementation. The Sequential Insertion Algorithm methodology is used. The aim of this research is to achieve operational efficiency, especially in transport costs, and ensure delivery time targets to consumers are met.

Keywords: Fast-Moving Consumer Goods (FMCG), Vehicle Routing Problem with Time Windows (VRPTW), Sequential Insertion Algorithm, operational efficiency.

Reference

  • Arvianto, A. H. Setiawan, and S. Saptadi, “Model Vehicle Routing Problem dengan Karakteristik Rute Majemuk, Multiple Time Windows, Multiple Products dan Heterogeneous Fleet untuk Depot Tunggal,” Jurnal Teknik Industri, vol. 16, pp. 83-94, 2014
  • Anugerah Trisatryo, Muhammad Nashir A, Femi Yulianti. (2021). “Perancangan Vehicle Routing Problem Pick-Up and Delivery Menggunakan Algoritma Nearest Neighbor dan Multi-Start Adaptive Large Neighborhood Search (Msalns) Pada Trayek Sekunder Pos Logistic Distribution Center Tambun PT Pos Logistik Indonesia”, Prodi S1 Teknik Industri, Fakultas Rekayasa Industri, Universitas Telkom, e-Proceeding of Engineering.
  • Ballou, Ronald H. (1992). Business Logistics Management, 4th edition, Prentice-Hall, Inc. New Jersey
  • Bowersox, D.J. (1996). Logistical Management: Integrated Supply Chain Process. Singapore: McGraw-Hill Companies, Inc.
  • Brain Slack (1990). Interrmodal Transportation in North America and The Development Of Inland Load Centers
  • Chopra, Sunil, and Peter Meindl. (2010). Supply Chain Management: Strategy, Planning, and Operation. Second Edition. Northwestern University: Prentice Hall.
  • Chow, Wing S. et al. (2008). Supply Chain Management in the US and Taiwan:An Empirical Study.”
  • David Simchi-Levi (2000). Designing And Managing The Supply Chain, Mc Graw – Hill Companies Inc, United States of America
  • Dita Ayu Pratama (2016). Vehicle Routing Problem dengan Time Window untuk Multiple Product dan Multiple Route Menggunakan Algoritma Sequential Insertion.
  • Felix Arya Gunadi, J. Dharma Lesmono, Kinley Aritonang. (2020). A Routing Model for Hybrid Hub-and-Spoke With Time Windows. Jurnal Teknik Industri ISSN Vol. 21, No. 1, February 2020, pp. 22-33
  • Heizer, Jay dan Barry Render. (2004). Principles of Operations Management. Fifth Edition. Pearson Education, Inc. Upper Saddle River : New Jersey
  • Johannes Igl, Florian Kellner. (2017). Exploring greenhouse gas reduction opportunities for retailers in Fast Moving Consumer Goods distribution networks. Faculty of Business, Economics and Management Information Systems, University of Regensburg, Germany.
  • Johan Oscar Ong, Suprayogi. (2011).Vehicle Routing Problem with Backhaul, Multiple Trips and Time Window, Jurnal Teknik Industri, Vol. 13, No. 1, Juni 2011, 1-10 ISSN 1411-2485 print / ISSN 2087-7439 online
  • Kallehauge, B., Larsen, J. and Madsen, O. (2006). Lagrangian Duality Applied to The Vehicle Routing Problem with Time Windows. Computers & Operations Research.
  • Li, X., (2014). Operations Management of Logistics and Supply Chain: Issues and Directions Review, Discrete Dynamics in Nature and Society.
  • Pires, et al. (2001). Measuring Supply Chain Performance, Orlando.
  • Prihantono, C.R (2012). Konsep Pengendalian Mutu, Bandung: PT Remaja Rosdakarya
  • Putu Irvan Arya Purwadana, I Made Candiasa, I Nyoman Sukajaya. (2021). “Pengembangan Aplikasi Penentuan Rute Pengiriman Barang Berdasarkan Berat dan Time Windows Menggunakan Metode Nearest Neighbour dan Tabu Search” Majalah Ilmiah Teknologi Elektro, Vol. 20, No. 2, Juli – Desember 2021 DOI: https://doi.org/10.24843/MITE.2021.v20i02.P14
  • Sapti Wahyuningsih, Darmawan Satyananda, Lucky Tri Octoviana, Rini Nurhakiki, Vehicle Routing Problem with Time Windows Variants and its Application in Distribution Optimization, Jurusan Matematika FMIPA, Universitas Negeri Malang, Indonesia
  • Siagian, Yolanda M. (2005). Aplikasi Supply Chain Management Dalam Dunia Bisnis. Jakarta : Gramedian Widiasarana
  • Thangiah, S. (1993). Vehicle Routing With Time Windows Using Genetic Algoruthms, Universitas Slippery Rock.
  • Tompkins, B., Ferrell. C. (2011). Benchmarking & Best Practices. Supply Chain Consortium.
  • Zabidi, Yasrin. (2001). ”Supply Chain Management”. Institut Teknologi Semarang.