Fabrication of Thermoelectric Module from Efficient Earth Abundant Thermoelectric Materials

Md. Ataur Rahman
Department of Computer Science & Engineering, Pundra University of Science & Technology, Bangladesh
DOI –
http://doi.org/10.37502/IJSMR.2022.5701

Abstract

To develop a power generation technology, we proposed low-cost and nontoxic earth-abundant thermoelectric materials consisting of n-type and p-type iron oxides. For high temperature applications of power generation, thermoelectric materials consisting of oxide assure better thermoelectric properties. In this research work, thermoelectric module has been fabricated with three pairs of p-type and n-type thermoelectric materials. In this context, we used Hematite (α-Fe2O3) as thermoelectric material which is naturally n-type. By doping Zn, α-Fe2O3 turned into p-type. Using spin coating method, n-type α-Fe2O3 and p-type Zn doped α-Fe2O3 (Zn:α-Fe2O3) have been synthesized. For the p-type and n-type legs of the thermoelectric module, the dense bulk samples of α-Fe2O3 have been produced by cold isostatic pressing at 450 MPa for 15 min. Six-leg thermoelectric module consisting of three pairs of n-type α-Fe2O3 and p-type Zn:α-Fe2O3 bulks of 3 × 5 mm2 cross-section and heights of 10.5 mm were fabricated. At an operating temperature of 893 K with a temperature difference of 471 K, an open circuit voltage of 744 mV was generated.

Keywords: Thermoelectric Module, Hematite, Spin Coating Method, Open Circuit Voltage

References

  • Reddy E. S., Noudem J. G., Hebert S. and Goupil C., Fabrication and properties of four-leg oxide thermoelectric modules, Phys. D: Appl. Phys., 38 (2005), 3751.
  • Chen G., Dresselhaus M. S., Dresselhaus G., Fleurial J. P. and Caillat T., Recent developments in thermoelectric materials, Mater. Rev., 48 (2003), 45.
  • Scherrer H. and Scherrer S., Handbook on Thermoelectricity edited by D M Rowe, CRC Press, 1995, 215.
  • Stordeur M. and Willers G., Valence band structure and the thermoelectric figure-of-merit of (Bi1-xSbx)2Te3 crystals, 8th European Workshop on Thermoelectrics of European Thermoelectric Society Poland, 2004, 67.
  • Matsubara I., Funahashi R., Takeuchi T., Sodeoka S., Takeuchi T. and Ueno K., Fabrication of an all-oxide thermoelectric power generator, Phys. Lett., 78 (2001), 3627.
  • Shin W., Murayama N., Ikeda K., Sago S., Thermoelectric power generation using Li–doped NiO and (Ba, Sr)PbO3 J Power Sources, 103 (2001), 80.
  • Ono Y., Kimura D., Kawano S., Okamura H., Watanabe R. and Kajitani T., Fabrication and performance of an oxide thermoelectric power generator, 21st Int. Conf. on Thermoelectrics,USA, 2002,454.
  • Shin W., Murayama N., Ikeda K. and Sago S,. Fabrication of Oxide Thermoelectric Generator Element, J. Appl. Phys., 39 (2000), 1224.
  • Funahashi R., Urata S., Mizuno K., Kouuchi T. and Mikami M., Ca7Bi0.3Co4O9∕ La0.9Bi0.1NiO3 thermoelectric devices with high output power density, Appl. Phys. Lett., 85 (2004), 1036.
  • Terasaki I., Sasago Y. and Uchinokura K., Large thermoelectric power in NaCo2O4 single crystals, Rev. B, 56 (1997), 12686.
  • Maignan A., Hebert S., Martin C. and Flahaut D., One dimensional compounds with large thermoelectric power: Ca3Co2O6 and Ca3CoMO6 with M = Ir4+ and Rh4+, Sci. Eng. B, 104 (2003), 121.
  • Funahashi R., Matsubara I., Ikuta H., Takeuchi T., Mizutani U. and Sodeoka S., An oxide single crystal with high thermoelectric performance in air, J. App. Phy. 39 (2000), L1127.
  • Thermoelectrics, Northwestern Materials Science and Engineering, 2015, http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/index.html.
  • Bhattacharya S., Rayaprol S., Singh A., Dogra A., Thinaharan C., Aswal D. K., et al., Low temperature thermo-power and electrical transport in misfit Ca3Co4O9 with elongated c-axis, J. Phy. D: App. Phy., 41 (2008), 085414.
  • Elsheikh M. H., Shnawah D. A., Sabri M. F. M., Said S. B. M., Hassan M. H., Bashir M. B. A., et al., A Review on thermoelectric renewable energy: principle parameters that affect their performance, Renewable and Sustainable Energy Reviews, 30 (2014), 337.
  • Hsu C. T., Huang G. Y., Chu H. S., Yu B., Yao D. J., Experiments and simulations on low temperature waste heat harvesting system by thermoelectric power generators, Applied Energy, 88 (2011), 1291.
  • Enes K., Selim D., Fatih U., Erdal C. and Huseyin K., Fabrication of a Thermoelectric Module Using p- and n-Type Oxide Thermoelectric Materials, 3rd Inter. Symp. on Inno. Tech. in Eng. and Sci., Valencia, Spain, 2015.
  • Van N. N., Pryds N., Nanostructured oxide materials and modules for high-temperature power generation from waste heat, Advances in Natural Science: Nanoscience and Nanotechnology, 4 (2013), 023002.
  • Souma T., Ohtaki M., Shigeno M., Ohba Y., Nakamura N., Shimozaki T., Fabrication and power generation characteristics of p-NaCo2O4/n-ZnO oxide thermoelectric modules, IEEE International Conference on Thermoelectrics, 2006, 603.
  • Urata S., Funahashi R., Mihara T., Kosuga A., Sodeoka S., Tanaka T., Power generation of a ptype Ca3Co4O9/n-type CaMnO3 module, International Journal of Applied Ceramic Technology, 4 (2007), 535.
  • Lim C. H., Choi S. M., Seo W. S., Park H. H., A power-generation test for oxide-based
    thermoelectric modules using p-type Ca3Co4O9 and n-type Ca9Nd0.1MnO3 legs, Journal of Electronic Materials, 41 (2012), 1247.
  • Funahashi R., Urata S., Fabrication and application of an oxide thermoelectric system, Int. J. Appl. Ceram. Technol., 4 (2007), 297.
  • Su H., Jiang Y., Lan X., Liu X., Zhong H., Yu D., Ca3-xBixCo4O9 and Ca1-ySmyMnO3
    Thermoelectric materials and their power generation devices, Phys. Status Solidi A, 208 (2011), 147.
  • Noudem J. G., Lemonnier S., Prevel M., Reddy E. S., Guilmeau E., Goupil C., Thermoelectric ceramics for generators, Journal of the European Ceramic Society, 28 (2008), 41.
  • Han L., Jiang Y., Li S., Su H., Lan X., Qin K., et al., High-temperature thermoelectric properties and energy transfer devices of Ca3Co4-xAgxO9 and Ca1-ySmyMnO3, Journal of Alloys and Compounds, 509 (2011), 8970.
  • Tomes P., Robert R., Trottmann M., Bocher L., Aguirre M. H., Bitschi A., et al., Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module, Journal of Electronic Materials, 39 (2010), 1696.