Forecasting youth unemployment in the aftermath of the COVID-19 pandemic: the Italian case

Livio Fenga1 & Semen Son-Turan2,*
1University of Exeter, Exeter, United Kingdom
2Department of Business Administration, MEF University, Istanbul, Turkey
DOI http://doi.org/10.37502/IJSMR.2022.5105

Abstract

Purpose: This study aims at forecasting NEET unemployment in Italy using a counterfactual scenario, based on an original empirical model, whereby the effects of the COVID-19 pandemic on the NEET rate are factored in and left out.
Methodology: An artificial neural network (ANN) model of the type feed-forward, with a Google Trends-generated variable that represents potentially relevant search queries, is employed to backcast, nowcast, and forecast Italian NEET unemployment for 2019, 2020, 2021, respectively.
Findings: Findings suggest that the Italian NEET unemployment rate will slightly increase in a less than proportional way, absorbing the COVID-19 pandemic’s effects in a relatively short time period.
Research Implications/ Limitation: Several limitations with respect to the limited sample size and the few number of explanatory variables are remedied through the use of an adequate methodology.
Originality: The use of an ANN in youth unemployment studies during a pandemic of the present scale is, to the best of the authors’ knowledge, unprecedented.

Keywords: Artificial neural network, COVID–19, youth unemployment, pandemic, maximum entropy bootstrap.

References

  • Agenda 2030 (2015). Transforming our world: the 2030 Agenda for Sustainable Development. Accessed at: https://sustainabledevelopment.un.org/post2015/transformingourworld. Access date: 23.05.2020.
  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in: B. N. Petrov and F. Csaki, eds., 2nd International Symposium on Information Theory (Akademia Kiado, Budapest).
  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
  • Anders, U., & Korn, O. (1996). Model selection in neural networks. ZEW Discussion Papers, 96-21.
  • Anvik, C., & Gjelstad, K. (2010). Just Google it. Forecasting Norwegian unemployment figures with web queries, Center for Research in Economics and Management CREAM Publication, 11.
  • Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Applied Economics Quarterly, 55(2), 107-120.
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
  • Bruno, G. S., Marelli, E., & Signorelli, M. (2014). The rise of NEET and youth unemployment in EU regions after the crisis. Comparative Economic Studies, 56(4), 592-615.
  • Choudhry, M. T., Marelli, E., & Signorelli, M. (2012). Youth unemployment rate and impact of financial crises. International Journal of Manpower, 33(1), 76-95.
  • Choi, H., & Varian, H. (2009). Predicting initial claims for unemployment benefits. Google Inc, 1-5.
  • Coibion, O., Gorodnichenko, Y., & Weber, M. (2020). Labor markets during the covid-19 crisis: A preliminary view (No. w27017). National Bureau of Economic Research.
  • D’Amuri, F., & Marcucci, J. (2010). ‘Google it!’Forecasting the US unemployment rate with a Google job search index.
  • D’Amuri, F., & Marcucci, J. (2017). The predictive power of Google searches in forecasting US unemployment. International Journal of Forecasting, 33(4), 801-816.
  • Derrick, T. R., & Thomas, J. M. (2004). Time series analysis: the cross-correlation function.
  • De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American Statistical Association, 106(496), 1513-1527.
  • De Livera, A. M. (2010), Forecasting time series with complex seasonal patterns using 538 exponential smoothing, PhD thesis, Monash University.
  • Demidova, O., & Signorelli, M. (2012). Determinants of youth unemployment in Russian regions. Post-Communist Economies, 24(2), 191-217.
  • Di Stefano, E. (2019). Leaving your mamma: why so late in Italy?. Review of Economics of the Household, 17(1), 323-347.
  • Doerr, S., & Gambacorta, L. (2020). Identifying regions at risk with Google Trends: the impact of Covid-19 on US labour markets. Accessed at: https://www.bis.org/publ/bisbull08.pdf. Accessed on: 26.05.2020.
  • EC Country Report (2020). European Commission Country Report Italy 2020. Accessed at https://ec.europa.eu/info/sites/info/files/2020-european_semester_country-report-italy_en.pdf. Access date: 23.05.2020.
  • Eurostat (2020). Eurostat NEET quarterly data. Accessed at https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=lfsi_neet_q&lang=en). Access date: 23.05.2020.
  • Fellini, F. (1960). La dolce vita(No. Nd429). DVD VIDEO.
  • Fine, T. L. (2006). Feedforward neural network methodology. Springer Science & Business Media.
  • Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature457(7232), 1012-1014.
  • Fondeur, Y., & Karamé, F. (2013). Can Google data help predict French youth unemployment?. Economic Modelling, 30, 117-125.
  • Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR.
  • Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76(2), 297–307.
  • ILOSTAT (2020). Homepage. Accessed at: https://ilostat.ilo.org/. Access date: 23.05.2020.
  • ILO Monitor (2020). ILO Monitor Third Edition, 29 April 2020. Accessed at: https://www.ilo.org/wcmsp5/groups/public/—dgreports/—dcomm/documents/briefingnote/wcms_743146.pdf. Access date: 23.05.2020.
  • Murata, N., Yoshizawa, S., & Amari, S. I. (1994). Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE transactions on neural networks, 5(6), 865-872.
  • Naccarato, A., Falorsi, S., Loriga, S., & Pierini, A. (2018). Combining official and Google Trends data to forecast the Italian youth unemployment rate. Technological Forecasting and Social Change, 130, 114-122.
  • Nagao, S., Takeda, F., & Tanaka, R. (2019). Nowcasting of the US unemployment rate using Google Trends. Finance Research Letters, 30, 103-109.
  • Quintano, C., Mazzocchi, P., & Rocca, A. (2018). The determinants of Italian NEETs and the effects of the economic crisis. Genus, 74(1), 5.
  • SDG Progress Report (2019). The Sustainable Development Goals Progress Report 2019. Accessed at: https://unstats.un.org/sdgs/report/2019/. Access date: 23.05.2020.
  • Statista (2020). Search engines ranked by market share in Italy 2019. Accessed at: https://www.statista.com/statistics/623043/search-engines-ranked-by-market-share-in-italy/. Access date: 28.05.2020.
  • UN (2020). UN Special Issue on COVID-19 and youth. Accessed at: https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2020/04/YOUTH-FLASH-Special-issue-on-COVID-19-1.pdf Access date: 23.05.2020.
  • Vicente, M. R., López-Menéndez, A. J., & Pérez, R. (2015). Forecasting unemployment with internet search data: Does it help to improve predictions when job destruction is skyrocketing?. Technological Forecasting and Social Change, 92, 132-139.
  • Vinod, K., Varghese, N., Roy, S. B., & Syamaprasad, U. (2009). Significant enhancement of the in-field critical current density of the MgB2 superconductor through codoping of nano-TiC with nano-SiC. Superconductor Science and Technology, 22(5), 055009.
  • Vinod, H. D. (2013). Maximum entropy bootstrap algorithm enhancements. Available at SSRN 2285041.