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Abstract 

This research presents a cost-centric approach to maintenance scheduling in multi-component 

systems, aimed at minimizing expenses while optimizing operational efficiency. By integrating 

predictive analytics and optimization techniques, we conduct a comprehensive analysis of 

production loss costs for diverse maintenance sequences, employing genetic algorithms to 

identify the most cost-effective strategy. Through rigorous exploratory data analysis, we refine 

our model and demonstrate its efficacy in achieving significant cost savings. A comparative 

case study showcases substantial reductions in maintenance expenses compared to traditional 

methods like RUL based scheduling, underscoring the potential of our approach in enhancing 

cost management and operational performance in industrial contexts. This study contributes 

valuable insights to the field of maintenance optimization and offers practical implications for 

industry practitioners seeking to improve cost-effectiveness and operational efficiency in multi-

component systems. 

Keywords: Maintenance scheduling, Cost optimization, multi-component systems, 

Predictive analytics, Optimization techniques, Genetic algorithms, Exploratory data analysis. 

 

1. Introduction 

The In the midst of the revolutionary wave known as Industry 4.0, where the landscape of 

manufacturing and production is undergoing transformative shifts propelled by digitalization 

and automation, the intricacies of managing system complexities and associated maintenance 

costs have surged to the forefront of industrial concerns.  

The financial stakes in maintenance management are significant, with estimates suggesting that 

maintenance expenses can consume a substantial portion, ranging from 15% to a staggering 

40%, of total production costs (Dunn, 1987; Lofsten, 2000). This puts considerable pressure 

on industries to maintain cost-efficiency while meeting the increasing demands of modern 

operations. Every $1 of deferred maintenance could potentially quadruple to $4 in capital 

renewal costs later on [1]. Moreover, allowing equipment to reach the point of failure could 

result in costs up to 10 times higher compared to implementing a regular maintenance program. 

Predictive maintenance emerges as a highly cost-effective strategy, offering savings of 

approximately 8% to 12% over preventive maintenance, and potentially up to 40% over 

reactive maintenance, according to the U.S. Department of Energy. Adding to the financial 

strain, the manufacturing sector of the country incurs approximately $1.5 billion per year in 
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costs due to unplanned maintenance downtime. Furthermore, the average unplanned downtime 

for a machine in Bangladesh is 20 [2] hours per year. 

 However, a recent study has found that implementing a comprehensive maintenance program 

could reduce costs by up to 50%. System failures in complex environments lead to extensive 

economic losses from penalties, shutdowns, and opportunistic expenses, highlighting the need 

for effective maintenance planning. Neglecting strategic maintenance to cut costs jeopardizes 

routine schedules and asset longevity, impacting industry competitiveness in dynamic markets. 

Technological advancements, particularly the adoption of sensors and data collection devices, 

have revolutionized maintenance practices. Data analytics now allows industries to predict and 

plan maintenance with precision. Central to this is Remaining Useful Life (RUL) prognostics, 

which aims to anticipate failures and optimize maintenance deployment. Despite its promise, 

challenges remain in ensuring RUL reliability and integrating it into maintenance frameworks, 

especially in complex multi-component systems. 

Unplanned equipment downtime significantly threatens productivity and profitability, making 

optimizing maintenance strategies critical. Developing effective maintenance strategies 

requires understanding the factors influencing maintenance costs in multi-component 

environments. The high costs of running equipment to failure underscore the need for proactive 

maintenance approaches. Industries must navigate escalating maintenance costs and system 

complexities, making effective maintenance strategies imperative. By embracing data-driven 

methodologies and innovative technologies, industries can optimize maintenance costs, 

enhance system reliability, and ensure operational efficiency in a dynamic landscape. 

Optimizing maintenance costs in industry is complex, involving unplanned maintenance, aging 

infrastructure, and inadequate predictive systems. Challenges include resource management, 

technological integration, regulatory compliance, cost control, and workforce shortages. 

Leveraging predictive maintenance and innovative solutions can improve processes, reduce 

costs, and enhance efficiency. 

Effective maintenance strategies are crucial for reducing downtime and costs in industrial 

production. Scheduled and predictive maintenance are common, with research showing that 

task grouping can lower costs and downtime. However, the best grouping techniques remain 

uncertain, and important factors are often overlooked. Our study aims to identify key factors 

in task grouping for predictive maintenance to lower costs and reduce downtime. This research 

is valuable for industries reliant on machinery and automation, aiming to enhance efficiency 

and effectiveness by improving maintenance strategies. 

2. Literature Review 

2.1 Factors affecting maintenance costs 

At the dawn of the new century, as Industry 4.0 gained momentum, System complexity and 

maintenance expenses have grown quickly, and the associated maintenance planning tasks have 

become very time-sensitive. The consequences of a breakdown in a complicated system are not 

limited to enormous maintenance expenses; they also include economic losses from 

opportunistic costs, penalty costs, and the cost of scheduled and unexpected shutdowns 

[3][4][5][6]. To reduce the maintenance cost, downtime, and failure risks for such systems, 
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determining and executing the most effective maintenance approach becomes increasingly 

challenging. 

One of the most significant challenges industries faces is the optimization of maintenance 

downtime-related costs, as unplanned equipment downtime can harm productivity, 

profitability, and overall competitiveness. In order to develop an optimal maintenance plan for 

these systems, it is crucial to comprehensively grasp the many aspects that impact maintenance 

expenses and their interrelationships within a multi-component setting. 

Maintenance-related downtime in complex multi-component systems poses a significant 

challenge in industrial settings, necessitating optimal maintenance policies that minimize 

downtime and related costs. A comprehensive investigation into maintenance strategies and 

innovative approaches is crucial for enhancing system reliability, availability, and operational 

efficiency. 

Alrabghi and Tiwari introduce a novel approach for optimizing maintenance strategies using 

discrete event simulation (DES) [7]. This method models the complex interactions between 

maintenance strategies and system assets, demonstrating a significant contribution to the 

optimization of maintenance systems. This research is among the first to use DES for such 

purposes, providing valuable insights into the application of DES in maintenance optimization. 

Shi and Zeng present a dynamic, opportunistic condition-based maintenance strategy for multi-

component systems [8]. Their strategy relies on real-time predictions of the remaining useful 

life (RUL) of components, considering stochastic dependence. Using a state space-based 

model, sequential Kalman filtering, and the expectation maximization (EM) algorithm for 

parameter estimation, their method is validated through numerical examples and case studies, 

showcasing its effectiveness in real-time RUL prediction. 

Table 1 Influencing Factors 
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[3] 2008               ✓           ✓ ✓ 

[4] 2015 ✓ ✓     ✓ ✓ ✓           ✓ ✓ ✓ 

[5] 2016   ✓                     ✓ ✓ ✓ 

[6] 2016 ✓ ✓ ✓ ✓                   ✓   

[7] 2017                 ✓         ✓ ✓ 

[8] 2017   ✓   ✓ ✓                 ✓   

[9] 2018                           ✓ ✓ 

[10] 2018   ✓ ✓ ✓           ✓       ✓ ✓ 

[11] 2019   ✓ ✓   ✓         ✓       ✓ ✓ 

[12] 2020   ✓ ✓   ✓       ✓ ✓   ✓   ✓ ✓ 

[13] 2020   ✓               ✓     ✓ ✓   

[14] 2020   ✓       ✓                   

[15] 2020   ✓ ✓   ✓         ✓       ✓ ✓ 

[16] 2020 ✓ ✓     ✓       ✓ ✓       ✓ ✓ 

[17] 2021   ✓   ✓ ✓           ✓   ✓     

[18] 2021   ✓ ✓             ✓           

[19] 2022 ✓   ✓   ✓     ✓           ✓ ✓ 
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[20] 2023   ✓               ✓     ✓     

[21] 2023     ✓   ✓ ✓               ✓ ✓ 

Our Study ✓ ✓ ✓             ✓ ✓         

Research on the optimization of maintenance task scheduling and vessel routing for offshore 

wind farms addresses the joint scheduling of maintenance tasks and vessel routing. This study 

contributes to the field by highlighting the challenges and opportunities in this area, offering 

valuable insights for optimizing maintenance strategies in offshore wind farms [9]. 

The impact of intelligent wireless sensor networks on predictive maintenance costs is explored, 

discussing the economic benefits of maintenance policies, the role of intelligent sensors, and 

cost optimization. This study likely offers insights into the cost-effectiveness and reliability 

improvements associated with intelligent wireless sensor networks for predictive maintenance 

[10]. 

A study focusing on predictive maintenance (PdM) for small and medium-sized enterprise 

(SME) CNC machine shops proposes a cost-effective PdM system architecture aimed at 

predicting cost savings. This research emphasizes the value of PdM for SMEs, predicting 

positive impacts on maintenance costs and performance, and addressing the minimal 

representation of SMEs in the literature [11]. 

Oyarbide-Zubillaga et al. propose a hybrid approach that combines DES with multi-objective 

evolutionary algorithms (MOEAs) for optimizing preventive maintenance (PM) in 

manufacturing systems [12]. This methodology allows for considering multiple conflicting 

objectives, providing a robust framework for enhancing system performance and reliability. 

Yuriy and Vayenas integrate DES with a genetic algorithm (GA)-based reliability assessment 

model for mine equipment systems [13]. This hybrid approach enables realistic system 

simulations and reliability assessments, identifying optimal strategies to enhance productivity 

and minimize downtime in mining operations. 

Golbasi and Turan develop a DES algorithm for optimizing multi-scenario maintenance 

policies in industrial systems, combining DES with optimization to minimize downtime and 

maintenance costs while maximizing system reliability [14]. 

Petkov, Wu, and Powell conduct a cost-benefit analysis of condition monitoring (CM) in the 

DEMO remote maintenance system [15]. Their study informs decision-makers about CM's 

economic viability, aiding strategic planning and resource allocation. 

Kamel et al. use genetic algorithms for preventive maintenance scheduling optimization, 

proposing a mathematical model optimized with a GA to minimize costs and downtime while 

maximizing reliability [16]. This study offers a potent tool for enhancing maintenance 

strategies. 

Louhichi, Sallak, and Pelletan focus on optimizing maintenance costs for mechanical bearing 

systems, providing insights and a framework to enhance maintenance strategies and optimize 

costs in similar systems [17]. 

Fan et al. propose a group maintenance optimization approach for subsea Xmas trees, 

addressing stochastic dependencies to improve maintenance strategies in offshore 

environments [18]. 
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Özgür-Ünlüakın et al. explore cost-effective fault diagnosis in multi-component dynamic 

systems under corrective maintenance, proposing a method tailored to these systems and 

enhancing fault diagnosis strategies [19]. 

A study in aviation maintenance proposes prescriptive strategies using DES for post-

prognostics decision-making, offering a comprehensive tool for optimizing maintenance 

strategies [20]. 

Hatsey and Birkie explore total cost optimization of submersible irrigation pump maintenance 

through simulation, enhancing maintenance strategies in the irrigation sector [21]. 

Gong et al. [20] examine dynamic preventive maintenance optimization for subway vehicle 

traction systems, considering different stages of system operation to enhance maintenance 

strategies [22]. 

A study investigates component maintenance strategies and risk analysis under random shock 

effects, providing insights for optimizing maintenance strategies [23] 

Mwanza, Telukdarie, and Igusa [24] focus on optimizing maintenance workflows in healthcare 

facilities using a multi-scenario DES and simulation annealing approach, enhancing 

maintenance strategies and ensuring reliability of critical medical equipment. 

Addressing maintenance optimization for complex multi-component systems will lead to 

substantial cost savings and improved productivity across various industrial sectors. 

2.2 Genetic algorithm in maintenance 

Predictive maintenance (PdM) is rapidly transforming the landscape of industrial maintenance 

strategies, focusing on the prediction of equipment failures before they occur to prevent costly 

downtime and maintenance expenses. This literature review synthesizes recent advancements 

in the field, highlighting key studies that leverage machine learning (ML), deep learning (DL), 

and optimization algorithms to enhance predictive maintenance systems within various 

industries. 

Chui, Gupta, and Vasant (2021) developed a genetic algorithm optimized RNN-LSTM model 

specifically tailored for predicting the remaining useful life (RUL) of turbofan engines[25]. 

Their work demonstrates how combining genetic algorithms with recurrent neural networks 

can refine prediction accuracy and adaptively tune the model parameters for specific 

maintenance scenarios. The authors presented a hybrid predictive maintenance model that 

integrates clustering, Synthetic Minority Over-sampling Technique (SMOTE), and Multi-

Layer Perceptron (MLP) neural networks optimized with a Grey Wolf algorithm[26]. This 

model effectively addresses the challenges of imbalanced data, enhancing the predictive 

accuracy for maintenance needs in diverse industrial applications. 

This study provided an extensive overview of predictive maintenance within the context of 

Industry 4.0, discussing various models and the inherent challenges of integrating these 

systems into modern industrial operations. Their work underscores the complexity of deploying 

predictive maintenance systems that need to be both efficient and scalable across different 

sectors [27]. Zhai, Kandemir, and Reinhart (2022) explored the integration of predictive 

maintenance with production scheduling using deep generative prognostic models [28]. This 
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approach not only predicts maintenance needs but also aligns them with production schedules 

to minimize the impact on operational efficiency. 

De Pater, Reijns, and Mitici (2022) discussed an alarm-based predictive maintenance 

scheduling model for aircraft engines that accounts for imperfect RUL prognostics[29]. Their 

approach focuses on maximizing safety and reliability by developing maintenance schedules 

that are sensitive to the uncertainties in RUL predictions. Ren (2021) emphasized optimizing 

predictive maintenance using machine learning to improve the reliability of various 

engineering systems[30]. His research highlights how ML models can be trained to identify 

patterns and predict failures more accurately than traditional methods. Teoh, Gill, and Parlikad 

(2021) introduced an IoT and fog-computing-based predictive maintenance model that 

leverages ML for effective asset management in Industry 4.0[31]. Their model processes real-

time data at the edge of the network, facilitating quicker response times and reducing the need 

for data transmission to the cloud. 

Nikfar, Bitencourt, and Mykoniatis (2022) proposed a two-phase machine learning approach 

for predictive maintenance of low voltage industrial motors[32]. This method distinguishes 

between different phases of the equipment lifecycle, allowing for more targeted and effective 

maintenance interventions. Khorsheed and Beyca (2021) integrated machine learning with 

utility theory to create a framework for real-time predictive maintenance in pumping 

systems[33]. This integration allows for the balancing of maintenance costs against the 

probability and impact of system failures, optimizing the maintenance schedule in real-time 

based on changing conditions. 

Serradilla, Zugasti, Rodriguez, and Zurutuza (2022) conducted a survey on deep learning 

models for predictive maintenance, comparing various approaches and discussing their 

challenges and future prospects[34]. Their study provides a comprehensive look at how deep 

learning can be utilized to enhance the predictive capabilities of maintenance systems. 

Paprocka, Kempa, and Skołud (2021) focused on predictive maintenance scheduling with 

reliability characteristics that depend on the phase of the machine lifecycle[35]. Their 

optimization approach ensures that maintenance resources are allocated more efficiently, based 

on the specific needs of each phase. Vincent, Salsabila, Siswanto, and Kuo (2022) developed a 

two-stage genetic algorithm for coordinating spare parts inventory and planned maintenance 

under uncertain failure conditions[36]. This approach helps in managing the logistics of spare 

parts and maintenance activities, reducing the risk of unexpected failures and downtime. 

Collectively, these studies illustrate the dynamic nature of predictive maintenance research and 

its application across various industrial domains. They highlight the critical role of advanced 

computational techniques in enhancing the predictability and reliability of maintenance 

operations, ultimately leading to increased operational efficiency and reduced costs. As 

industries continue to advance towards fully integrated digital systems, predictive maintenance 

will play an increasingly vital role in ensuring the sustainability and profitability of industrial 

operations. 

2.3 RUL based maintenance 

In recent years, the implementation of predictive maintenance strategies powered by 

advancements in data analytics and machine learning has garnered significant attention in 

industrial operations. This literature review examines several key studies that contribute to the 
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field of predictive maintenance, particularly focusing on methodologies for calculating and 

predicting the Remaining Useful Life (RUL) of various components and systems. These studies 

leverage diverse computational models and innovative algorithms to enhance the reliability and 

efficiency of maintenance operations.  

Aivaliotis et al. (2017) present a novel RUL calculation approach using physical-based 

simulation models, showcased at the 2017 International Conference on Engineering, 

Technology and Innovation[37]. Their method emphasizes the use of detailed simulations to 

predict wear and tear, which can be particularly beneficial for industries requiring precise 

maintenance schedules to prevent unexpected downtime. 

The authors explore RUL prediction in multi-state manufacturing systems, considering 

functional dependencies among components[38]. Their research highlights the complexities of 

systems where component states are interdependent accommodate these nuances, thereby 

improving the overall system reliability. In a similar vein, and they develop predictive 

maintenance strategies that the authors introduce a dynamic predictive maintenance model for 

turbofan engines using data-driven probabilistic RUL prognostics[39]. Their work is crucial 

for the aerospace industry where maintenance decisions have critical safety implications. This 

approach allows for maintenance scheduling based on probabilistic assessments of component 

life, which can significantly reduce the risk of failure.  

The author proposes a risk-averse framework for RUL estimation that is designed to err on the 

side of caution, thus ensuring higher safety standards in maintenance practices[40]. Their 

methodology uses advanced statistical techniques to adjust predictions in favor of scenarios 

that minimize potential risks, which is vital for high-stakes industries. This study delves into 

Bayesian deep learning for their prognostic-driven predictive maintenance framework[41]. 

This method combines the strength of Bayesian statistics with the versatility of deep learning, 

offering a robust tool for handling the uncertainties inherent in RUL predictions. 

The study by Hu and Chen (2020) focused on the predictive maintenance of systems subject to 

hard failures using the proportional hazards model[42]. This statistical approach models the 

hazard rate as a function of several covariates, which provides a nuanced understanding of the 

factors influencing the likelihood of system failure. Lee and Mitici (2023) investigated the 

application of deep reinforcement learning for predictive aircraft maintenance[43]. By 

integrating deep learning with probabilistic models of RUL, their research represents a cutting-

edge approach to maintenance that can dynamically adapt to new data and evolving conditions 

in real-time. This study utilized artificial neural networks for the RUL prediction of equipment 

in production lines[44]. Their study demonstrates the applicability of neural networks in 

capturing complex non-linear relationships in data, which are often present in industrial 

settings. 

Another significant contribution by de Pater and Mitici (2021) focuses on multi-component 

systems of repairable[45]. Their predictive maintenance strategy considers RUL prognostics 

along with constraints such as a limited stock of spare components, addressing a common 

practical challenge in maintenance management. The authors enhance RUL estimation 

techniques using a similarity-based prognostic algorithm coupled with an RNN 

autoencoder[46]. This approach effectively captures the temporal patterns in operational data, 

improving the accuracy of RUL estimates. 
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Together, these studies provide a comprehensive overview of current innovations in predictive 

maintenance strategies. They not only highlight the diverse approaches to RUL estimation and 

prediction but also underscore the importance of integrating these technologies into practical, 

real-world maintenance operations. This body of work forms a solid foundation for further 

research and implementation of predictive maintenance in various industrial sectors, aiming to 

optimize maintenance schedules, reduce operational costs, and enhance system reliability. 

3. Methodology 

We want to minimize the maintenance cost in a multi components system. With this aim, we 

have read some related research papers. After reading the research papers we have decided to 

make a model which will minimize the total production loss cost. Actually, the cost for 

maintenance is varied by the scheduling system. If the maintenance schedule is optimal then it 

will be cost effective. We have worked on 2 research papers. One of the papers works with the 

scheduling of maintenance and another one works on calculating the maintenance cost. We 

want to extend both of the papers. First, we want to measure the RUL of machines. After that 

we have proposed a mathematical model which will minimize the production loss cost. Using 

the RUL and other data we will be able to calculate the total production loss cost from our 

mathematical model. We have used genetic algorithms along with the proposed mathematical 

model for calculating the optimal schedule of maintenance. After scheming the machines, we 

will calculate the total cost of maintenance using various factors which are not considered in 

other papers. After finishing the total cost calculating equation, we will able to finalize the total 

cost for our model. We have used NASA CMPAS data to explain the methodology properly.   

We can do sensitivity analysis for differentiating our results from other methods. The proposed 

process flow chart is given below. 

 

Fig. 1 Methodology Flow Chart 

3.1 Mathematical Model Formation 

Production loss cost = PLC 

Idle time = T 
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Maintenance duration = MD 

Production loss per hour = C 

Previous running maintenance task time = t 

Remanning useful life = RUL 

Here,  

The Production Loss Cost, PLC = (Idle time + Maintenance duration) × Production loss per 

hour; 

It can be written as, 

PLC = (T+MD) ×C (1) 

Idle time will be calculated as, 

Idle time, T = max ((Previous running maintenance task time- Remaining useful life),0); 

Or, T= max (t - RUL ,0) (2) 

Target: 

Our target is to minimize PLC (Production Loss Cost) 

Required Data: 

Remaining useful life (RUL) 

Maintenance Duration 

Production Loss Per Hour 

3.2 Predicting the Remaining Useful Life of Machines 

We have managed to find out RUL (Remaining Useful Life) of a machine based on Alarm-

based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful 

Life prognostics [1].  

We are using CMAPSS Jet Engine Simulated Data [2] as a sample to test our model.  

This study used CNN Model to find out the Remaining Useful Life. We are testing other models 

to find out which model gives us the best result with less error.  

3.3 Calculation of Remaining Useful Life 

We used machine learning algorithms to calculate the Remaining useful life of a Machine. The 

training data set was collected from CMAPSS Jet Engine Simulated Data [2].  

First, we imported the data into kaggle.com then the data was organized for more efficient use. 

 

Fig. 2 Data Imported on Kaggle 
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Fig. 3 Imported Data 

 

Fig. 4 Imported Data (Continued) 

Here we can see that there is Cycle time different sensors and finally at the end of the table 

there is a column of RUL which indicates the Remaining Useful Life of the machine after that 

cycle. After importing the data, it is time to find out the relevant features. We used a threshold 

of 0.5 to find the correlation matrix. 
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Fig. 2 Correlation Matrix to identify the relevant features 

 

Fig. 3 Feature Importance Matrix 

After that we used CNN to find out the RUL same used in our base paper.  

We had four data subsets FD001, FD002, FD003, FD004. We found the RMSE for each of the 

data subsets. We evaluated the RMSE by using the following equation (3). 

RMSE =√(
1

𝑛
∑ 𝑒𝑤2
𝑛
𝑤=1 ) (3) 

Table 2. RMSE comparison between Our approach vs Base paper approach 

CNN Result 

Comparison 
FD001 RMSE FD002 RMSE FD003 RMSE FD004 RMSE 

Our Analysis Result 8.40% 3.86% 13.80% 5.28% 

Base Paper 

Analysis Result 
12.62% 22.36% 12.64% 23.31% 

Table 2 shows the RMSE for each of the 4 test data subsets of C-MAPSS. 
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RMSE: 8.40% 

Data Set: FD001 

 

RMSE 3.86% 

Data Set: FD002 

 

RMSE 13.80% 

Data Set: FD003 
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RMSE 5.28% 

Data Set: FD004 

From the above discussion we can say that we have found a significant lower error rate using 

CNN method. By using CNN model, we will be able to find the RUL for our data.  

3.4 Scheduling by Genetic Algorithm 

In our study, we utilized a genetic algorithm to identify the most optimized sequence that 

minimizes total production loss cost, as outlined in our proposed mathematical model detailed 

in Appendix A. This model serves as the foundation for the genetic algorithm's operation. By 

applying this advanced computational technique, we systematically explored various 

sequences, enabling us to determine the one that leads to the least production loss cost. This 

approach ensures a comprehensive search within the solution space, leveraging the genetic 

algorithm's strengths in optimization and its ability to handle complex, multi-variable 

problems. Consequently, the resulting sequence from our model significantly reduces 

production inefficiencies, demonstrating the efficacy of our proposed method. This section 

details the application and outcomes of the genetic algorithm, providing a robust framework 

for minimizing production loss and enhancing overall system efficiency.  

3.5 Total Cost Calculation 

To determine the total maintenance cost for each machine, the Production Loss Cost, 

Maintenance Cost, and Setup Cost are aggregated. This comprehensive approach ensures that 

all relevant factors influencing maintenance expenses are accounted for, facilitating a more 

accurate assessment of the overall cost implications of maintenance activities. 

Let: 

• 𝑃𝐿𝐶 represent the Total Production Loss Cost. 

• 𝑀𝐶 represent the Maintenance Cost. 
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• 𝑆C represent the Setup Cost. 

• TC represent the Total Cost. 

The total maintenance cost (TC) for each machine can be expressed as the sum of the 

Production Loss Cost, Maintenance Cost, and Setup Cost: 

𝑇𝐶=𝑃𝐿𝐶+𝑀𝐶+𝑆𝐶 (4) 

This model allows for the comprehensive evaluation of maintenance expenses, considering 

both the direct costs associated with maintenance tasks (Maintenance Cost and Setup Cost) as 

well as the indirect costs resulting from downtime or reduced productivity (Total Production 

Loss Cost). By aggregating these components, a more accurate assessment of the overall 

maintenance cost can be obtained. 

4. Case Study 

This case study explores the efficacy of a novel maintenance scheduling approach that 

prioritizes total cost considerations over RUL-based strategies. By comparing this innovative 

approach with a traditional RUL-centric model, we aim to evaluate its effectiveness in 

achieving cost savings and operational improvements. Through rigorous analysis and 

comparison of these two methodologies, this study seeks to provide valuable insights into the 

optimal maintenance scheduling practices for modern industrial systems. 

4.1 Design of the Case Study 

The design of a case study serves as a pivotal step in comprehending and resolving complex 

problems while aiming for accurate results. In this particular case study, our primary objective 

was to conduct a comparative analysis of costs between our proposed maintenance scheduling 

model and the model utilized in a previous study [5]. To facilitate this analysis, we leveraged 

the NASA Turbofan Jet engine dataset, comprising data from 100 turbofan engines, 

amalgamated from FD001, FD002, FD003, and FD004. As outlined in our methodology, we 

partitioned the dataset into 80% training data and 20% testing data, employing Convolutional 

Neural Networks (CNN) to derive Remaining Useful Life (RUL) prognostics, a process 

consistent with the previous research approach. 

For our study, we sampled 10 engines from the dataset, each exhibiting an average lifespan of 

204 cycles, with a minimum of 110 cycles and a maximum of 430 cycles. Figure 6.1 illustrates 

the two contrasting approaches utilized in our study and the base paper [4]. In our approach, 

we initiated by computing the production loss cost utilizing RUL and our proposed 

mathematical model. This production loss cost calculation was pivotal in gauging the impact 

of maintenance scheduling decisions on overall production efficiency. 
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Fig. 7 Process of the case study 

Subsequently, employing a genetic algorithm, we determined the optimal sequence for 

maintenance activities, aiming to minimize the total production loss cost. Conversely, in the 

base paper's methodology, maintenance scheduling was predicated on the remaining useful life 

of each machine, prioritizing the repair of machines with imminent failures. Post-scheduling, 

the total cost was computed to evaluate the efficacy of the maintenance strategy. 

Following the computation of total costs using both approaches, a comparative analysis was 
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base paper's methodology, maintenance scheduling was predicated on the remaining useful life 

of each machine, prioritizing the repair of machines with imminent failures. Post-scheduling, 

the total cost was computed to evaluate the efficacy of the maintenance strategy. 

Following the computation of total costs using both approaches, a comparative analysis was 

conducted to discern the strengths and weaknesses of each model. By scrutinizing the cost 

differentials and performance outcomes, we sought to ascertain the superior model for 

designing maintenance scheduling protocols. This comparative analysis is instrumental in 

informing future maintenance strategies and optimizing operational efficiency in industrial 

settings. 

4.2 Data Analysis and Result Formulation 

Following is the randomly sampled data described in section 6.2. Table 6.1 shows RUL, 

Maintenance Duration and Production Loss Cost is given for each engine and the engines are 

selected randomly.  

Table 3 RMSE comparison between Our approach vs Base paper approach [46] 

SL Engine No 
RUL 

(Days) 

Maintenance Duration 

(Days) 

Production Loss Cost 

(Days) 

0 1 36 2.6 4016 

1 2 30 3.8 3818 

2 10 25 3.3 3485 

3 11 42 2.9 3375 

4 13 28 3.3 3416 

5 14 14 2.4 3075 

6 16 2 2.4 4010 

7 17 10 3.6 4107 

8 18 24 2.5 4173 

9 26 38 2.8 4077 

After sampling the data, the next task is to schedule using the RUL as instructed in the base 

paper[47] The following table is sequenced based on the RUL. 

Table 4 Scheduling based on RUL as the base paper[48] 

SL Engine No 
RUL  

(Days) 

Maintenance Duration 

(Days) 

Production Loss Cost 

(USD) 

4 13 0 3.3 3416 

6 16 2 2.4 4010 

7 17 10 3.6 4107 

5 14 14 2.4 3075 

8 18 24 2.5 4173 

2 10 25 3.3 3485 

1 2 30 3.8 3818 

0 1 36 2.6 4016 

9 26 38 2.8 4077 

3 11 42 2.9 3375 
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Now after scheduling is done the total cost is calculated.  The following table shows the total 

cost of maintaining these 10 engines using the base paper model.  

Table 5 Cost Calculation using Base Paper Model 
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4 13 0 3.3 3416 3.3 11272.8 1076028 29011 1,116,311.80  

6 16 2 2.4 4010 3.7 14837 803602 79724 898,163.00  

7 17 10 3.6 4107 3.6 14785.2 949688 24834 989,307.20  

5 14 14 2.4 3075 2.4 7380 1197649 100385 1,305,414.00  

8 18 24 2.5 4173 2.5 10432.5 855025 77240 942,697.50  

2 10 25 3.3 3485 3.3 11500.5 937157 110357 1,059,014.50  

1 2 30 3.8 3818 3.8 14508.4 804455 57003 875,966.40  

0 1 36 2.6 4016 2.6 10441.6 1067847 46175 1,124,463.60  

9 26 38 2.8 4077 2.8 11415.6 769771 23492 804,678.60  

3 11 42 2.9 3375 2.9 9787.5 848394 20170 878,351.50  

      Total Production Loss Cost 160498.4 Total Cost 10,038,505.40  

In Table 5 we can see the total cost is 10,038,505.40 US Dollars[48] 

Now we are going to compare this with our proposed model to understand if our proposed 

model better than the base paper model. 

Table 6 Maintenance Scheduling based on our proposed model [48] 

SL 
Engine  

No 

RUL  

(Days) 

Maintenance  

Duration  

(Days) 

Production  

Loss  

Cost 

(USD) 

Maintenance  

Duration  

(USD) 

Setup  

Cost  

(USD) 

Total  

Cost  

(USD) 
 

4 13 0 3.3 11272.8 1076028 29011 1116312  

6 16 2 2.4 14837 803602 79724 898163  

0 1 36 2.6 10441.6 1067847 46175 1124464  

7 17 10 3.6 14785.2 949688 24834 989307  

5 14 14 2.4 7380 1197649 100385 1305414  

1 2 30 3.8 14508.4 804455 57003 875966  

8 18 24 2.5 10432.5 855025 77240 942698  

2 10 25 3.3 11500.5 937157 110357 1059015  

3 11 42 2.9 9787.5 848394 20170 878352  

9 26 38 2.8 11415.6 769771 23492 804679  

    Total Production Loss Cost 116361.1 Total Cost 9994368  

From Table 6 we can see that the total cost is 9994368.1 US Dollars[47] which is significantly 

lower than the cost found on the base paper. First RUL is calculated and after that Production 

loss cost is calculated and based on the production loss cost the maintenance activity is 

scheduled and finally the total cost is calculated.  

5. Result & Discussion 
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Our research implemented a cost-centric approach to optimize maintenance activities in a 

multi-component system, focusing on minimizing expenses. By forecasting the Remaining 

Useful Life (RUL) of system components, we calculated production loss costs for various 

maintenance sequences. Using genetic algorithms, we identified the optimal maintenance 

schedule, integrating predictive analytics and optimization techniques. Exploratory data 

analysis helped refine our model, leading to a robust maintenance strategy. 

Our case study demonstrated significant cost savings with our approach, achieving a total cost 

of 9,994,368.1 USD compared to the base paper model's 10,038,505.40 USD, and a notable 

28% reduction in production loss costs from 160,498.40 USD to 116,361.1 USD. This 

prioritization based on cost implications, rather than RUL, proved effective in better cost 

management and substantial expense reduction. Our model optimized maintenance duration, 

minimized production loss costs, improved resource utilization, reduced downtime, and 

enhanced operational performance. 

Our study demonstrates the effectiveness of a cost-centric approach in optimizing maintenance 

for multi-component systems. By prioritizing tasks based on cost implications instead of solely 

the Remaining Useful Life (RUL) of components, we achieved significant cost savings and 

operational efficiency. A key finding was a 28% reduction in production loss costs, 

underscoring the benefits of a comprehensive cost-based maintenance strategy. 

Integrating predictive analytics with optimization techniques, specifically genetic algorithms, 

allowed us to forecast component failures and determine optimal maintenance schedules. This 

approach enhanced resource utilization and reduced downtime. Insights from exploratory data 

analysis refined our model, making it more suited to the system's specific characteristics. 

Overall, our research highlights that prioritizing maintenance tasks based on cost, combined 

with predictive analytics and optimization, can significantly reduce expenses and improve 

operational performance, offering valuable strategies for industries aiming to enhance cost 

management and maintenance efficiency. 

6. Conclusion 

Our research highlights the critical role of cost optimization in maintenance scheduling for 

multi-component systems. By integrating predictive analytics and optimization techniques, we 

demonstrated that prioritizing maintenance tasks based on cost implications, rather than 

traditional metrics like Remaining Useful Life (RUL), leads to significant cost savings and 

enhanced operational efficiency. 

Our case study showed a notable cost reduction, with our optimized maintenance strategy 

totaling 9,994,368.1 USD, compared to the base paper's 10,038,505.40 USD, representing a 

28% savings in production loss costs. This reduction underscores the effectiveness of 

considering maintenance duration in cost optimization, leading to improved resource 

utilization and minimized downtime. 

The study underscores the importance of a cost-centric approach in maintenance scheduling, 

offering valuable insights for better cost management and operational performance. These 
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findings provide practical implications for industries aiming to optimize maintenance activities 

and achieve substantial cost savings. 

Future directions for enhancing our maintenance scheduling model include incorporating 

additional cost factors like energy, labor, and materials for comprehensive cost optimization. 

Developing a multi-machine maintenance system and integrating strategies for semi-broken 

machines could enhance efficiency and reduce downtime. Implementing advanced task 

grouping techniques can optimize resource allocation and improve technician productivity. 

These avenues aim to further refine maintenance optimization, enhancing operational 

efficiency and cost-effectiveness in industrial settings. 
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