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Abstract 

Cytotoxicity is a very important aspect that gains big research interest in toxicology and 

pharmacology as it is related to whether a compound may cause cell damage, necrosis or 

apoptosis and this contributes effectively to determine the toxicity potential of a compound and 

to cancer treatment studies as well. The complexity and the sensitivity of cytotoxicity assays 

and the involvement of animal tests in many instances increase the need for rapid and reliable 

alternative methods. Quantitative structure-activity relationships (QSAR) are relevant 

techniques that provide mathematical models and help in chemicals screening and in predicting 

biological activities and eventually cytotoxicity. Because of their capacity to handle complex 

problems, machine learning contributed substantially to the QSAR field's evolvement. In this 

study, we established a predictive QSAR model based on machine learning, namely deep neural 

network to predict the cytotoxicity of phenols. The model exhibited high performances in 

predicting new compounds. It was proved that hydrophobic, steric and electronic effects are 

relevant in determining the cytotoxicity variability of phenols against Tetrahymena pyriformis. 

Keywords: Cytotoxicity, Machine learning, Phenols, QSAR, Tetrahymena pyriformis, Risk 

assessment. 

 

1. Introduction 

Phenols are chemical compounds that can both be produced naturally and manufactured. They 

ubiquitously exist in the environment as the secondary metabolites of plants. They are present 

in fruits, cereals, vegetables. They are well-known by their anti-oxidant effect [1]–[4] and anti- 

cancer benefits as natural or synthetic products. It was suggested that they suppress oxidative 

stress by scavenging peroxy radicals [5]–[7]. Some phenols were reported as natural 

antimicrobial products that protect the plant from pathogens such as lignin, flavones, stilbenes 

and salicylic acid [8]. They might also be produced as a result of using pesticides in agriculture 

like the pentachlorophenol. 

Phenolic compounds are also synthesised to be used in many industries such as preservatives, 

food processing, leather, plastic, resins. Phenols are known as industrial waste products present 

in soil, air and wastewater. In this sense, they represent big environmental and toxicological 

risks. Because of their high solubility and toxicity, they are considered as dangerous pollutants. 

The study of their toxicity against aquatic organisms is revealed to be very important. 
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Dangerous risks to humans may occur through multiple way of exposure to phenols, especially 

by inhalation, ingestion or dermal contact with these compounds or contaminated air or water 

[7], [9]–[11]. In fact, phenols irritate skin and cause its necrosis. More, many phenolic 

compounds that can be found in wastewater, e.g. bisphenol A, Butylated hydroxyanisole 

(BHA), some alkylphenols and nitrophenols can cause estrogenic disruption or teratogenic 

effects [12]–[14] 

The antioxidant effect of phenols is suggested to be related to their ability to scavenge 

endogenous reactive oxygen species (ROS) according to equation (1).  

 

The existence of the aryloxyl radical, under some circumstances, may trigger different kinds 

of secondary reactions and there is some chance to conduct to display pro-oxidant activity 

(Equation (3)). This pro-oxidant effect is pretended to involve interaction of the phenols with 

transition metals [15]. 

 

Either the anti-oxidant mechanism of phenols involves a Hydrogen atom transfer or a single 

electron transfer, it is admitted that the anti-oxidant activity is attributed to some 

characteristics: O—H bond strength, hydrophobicity and hindrance in the anti-oxidant. It is 

noteworthy to mention that cytotoxicity may occur according the process of attacking ROS or 

by causing damage to cellular systems or DNA. The dual behavior of phenols raises big 

questions about their toxicity mechanism [6], [15], [16]. Cytotoxicity and anti-oxidant activity 

for many phenolic compounds should be determined. Many computational methods have been 

developed to relate chemical structure to biological activities. Quantitative Structure-Activity 

Relationships (QSAR) are relevant techniques that develop theoretical models and help to 

understand such mechanisms [6], [17]–[19]. QSAR explore and model the relationship 

between the chemical structure or physicochemical properties of a set of molecules and a target 

endpoint. The latter can be a feature, biological activity or physicochemical property. They 

require considerable and meticulous attention in all model development steps. Since their first 

development by Hansch et al. [20], they were successful in fulfilling the need to a knowledge- 

guided synthesis of prospective compounds and to speed up virtual screening and drug design 

process. They play major role in determining the factors enhancing or decreasing a given 

activity and hence understanding the mechanisms governing the activity and in predicting new 

congeners of synthesized drugs, more effective and more active. 

QSAR models were very useful in several domains such as combinatorial chemistry, 

toxicology, high-throughput screening, drug development and drug design. They exhibited 

high performances in predicting biological activities that were experimentally confirmed 

afterward [6], [18], [21], [22]. In toxicology, QSAR approach may constitute an alternative to 

in vivo and animal tests. They proved to be time and costs saving. 
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Many statistical methods were used to establish QSAR models. Among these methods, 

machine learning (ML) proved to be highly pertinent and successful in developing accurate 

models especially with complex nonlinear data. Artificial neural networks (ANN) were first 

used in QSAR modelling in 1973 by Hiller et al. to distinguish between active and non-active 

compounds [23] 

They have proven to be powerful for nonlinear optimization problems frequently encountered 

in biological and chemical processes. Artificial neural networks (ANN), support vector 

machines (SVM), random forest (RF) were among machine learning methods that were used 

as a QSAR model-building in numerous studies and for many chemical compounds. 

Deep learning is a ML algorithm based on ANN that proves a high-performance in handling 

QSAR modeling. Owing to its ability to detect meaningful patterns in the data, it outperforms 

many statistical methods in inferring the relationships between the endpoints and the inputs 

and in generating accurate predictive models. ANN with backpropagation learning algorithm 

are the most popular ML methods used in many domains. They are based on several nodes 

arranged in multiple layers and can map any complex function. Each node can be activated by 

previous activated nodes via weighted interconnections. Many transformations and 

approximations are applied to the nodes' status and the weights until the production of the 

desired behavior. 

Unlike shallow ANN, the process of producing outputs from inputs, with the deep neural 

networks (DNN) involves a multi-level learning strategy leading to more accurate data 

processing. Through the different layers, the algorithm goes hierarchically from low level 

pattern extraction to a higher level, in other words, to a higher level of data abstraction. Thus, 

the network optimization is faster and the problem of overfitting, from which suffer mostly the 

shallow ANN, is avoided [24]. Handling large datasets and implementing multiple layers 

becomes thus possible with DNN and helps approximating complex function. DNN gain now 

big interest and their usage opens new era in QSAR models establishment. Interestingly, the 

molecular descriptors that constitute the inputs of the DNN can be implemented without many 

restrictions on the dataset size [25]. One can describe the prototypes/molecules as precisely as 

possible using 1-D, 2-D and 3-D parameters. The selection of the inputs obeys to other 

considerations related to the relevance and the reliability of these descriptors. 

It is interesting to note that DNN were primarily used in many classification and transcription 

problems. There are only few investigations using DNN in establishing regression models [26], 

[27]. As in many domains, they provide good predictive models for biological and 

pharmaceutical properties [26]–[29]. 

Many QSAR models studying different datasets of phenolic compounds were described in the 

literature [6], [18], [30]–[34]. Most of them have used multiple linear regression (MLR) and 

provide several linear models. Other models were also developed by partial least squares (PLS) 

and ANN. 

For this investigation, we used DNN to develop a regression-based QSAR model to predict 

cytotoxicity of phenols to Tetrahymena pyriformis. For this purpose, we calculated several 
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parameters to describe the molecular structure and the physico-chemical properties of the 

studied phenolic compounds and to serve as network inputs. 

2. Material and Methods 

2.1 Datasets 

In this study, 250 phenolic compounds with different types of substituents on the aromatic ring 

were investigated. Substituents in ortho, meta and para positions were implemented in the same 

dataset. These compounds were widely studied by many authors [35], [36]. The data contain 

mono-, bi-, and tri-substituted phenols. In a previous work, Selassi et al. [32], [37], [38] studied 

separately different datasets of phenols with electron-releasing and electron-withdrawing 

substituents. 

The target activity is the cytotoxicity of the 250 phenols to the Tetrahymena pyriformis ss 

expressed by IGC50; the 50% growth inhibitory concentration (mmol/L) of a compound to 

Tetrahymena pyriformis. Different modes of action (MOA) were considered. For calculation 

conformity, the values of log (1/IGC50) were considered as endpoints. It is noteworthy that the 

dataset contains much diversified endpoints. The values of log (1/IGC50) ranges from -1.5 to 

2.71 with a mean value of 0.739 and a standard deviation of 0.828. 

To be able to assess the model, the initial dataset was divided into a training and a predictive 

datasets. Thus, 80% randomly selected phenols were used for the model development and the 

remaining 20 % served as external dataset to assess the predictive capability of the DNN model. 

Both subsets contain compounds with electron-withdrawing and electron-releasing 

substituents. 

2.1 Molecular Descriptors 

It was emphasized in many instances that the quality of molecular description inherently affects 

the quality of a QSAR model [19], [39]. In this investigation, we paid considerable attention to 

the molecular descriptors to implement in the model towards getting a reliable model. In this 

study, the endpoints were sparse and the substituents were significantly diversified and there 

was a need to generate molecular descriptors that describes well the features of the whole 

dataset and delineates its diversity. Hence, molecular descriptors that describe the entire 

molecule have been chosen. Many structural parameters that give details on the molecular 

connectivity were implemented, namely Kier parameters [40] indices and structural 

fingerprints [41]. They were generated by the QSARIN software [42]. Actually, fingerprints 

are numerical values that encode fragments or subgroups in a molecule. To take into account 

the electronic interaction of the phenols, we introduced molecular descriptors such as the molar 

refractivity (MR) and the Mc Gowan volume (McVol) [43]. Those descriptors were calculated 

using the CLogP program. The hydrophobic character of the compounds was introduced via 

logP parameter, the octanol-water partition coefficient of the whole compound, it was 

generated by the CLogP program. Electronic aspect of the substituents plays a major role in 

the cytotoxicity of phenols. Many electronic parameters, such as LUMO (Lower Unoccupied 

Molecular Orbital) and HOMO (Highest Occupied Molecular Orbital), Pka (acid dissociation 

constant) and Ip (ionization potential) were implemented. These molecular descriptors were 
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calculated after a geometry optimization of the molecules using the PM6 semi-empirical 

quantum method implemented in MOPAC 7 program [44], [45]. The implementation of these 

electronic descriptors helped to handle a dataset of phenols with electron-releasing and 

electron-withdrawing substituents. A total number of 118 molecular descriptors were then 

generated for the whole dataset. 

2.3 Model development 

For the purpose of this study, we developed a neural network based on Keras library and using 

Tensorflow framework [46]–[48]. In order to construct models with high predictive 

performance, many hyperparameters were optimized including the learning rate, the bias and 

batch size. The DNN architecture, consisting of many interconnected layers, was also 

monitored. DNN architectures consisted of two hidden layers, one input and one output layer. 

Although there is common consensus about the DNN capability of handling big data, the most 

important in the context of QSAR model establishment is the significance of the inputs and the 

information they provide. On this regard only relevant molecular descriptors were implemented 

as network inputs in this work. Hyperbolic tangent function was used as activation function for 

hidden nodes and the stochastic gradient descent algorithm was adopted. 

Two regression models were developed as well using MLR and shallow ANN methods to 

compare with DNN. The ANN was constructed with the same inputs in the input layer, one 

hidden layer and one output layer. The learning rate was set to 0.1. 

3. Results and Discussion 

3.1 Model fitting 

The dataset was randomly split into a training dataset (200 samples) and a predictive dataset 

(50 samples). The distributions of the cytotoxicity for both datasets (training and predictive) 

were quasi similar. The training stage afforded an opportunity to fine-tune the internal networks 

hyperparameters 

To evaluate the accuracy of the established models, and to be able to compare it with other 

models, two metrics were adopted; the statistical root-mean-square deviation (RMSD) and the 

correlation coefficient R². 

A DNN model with two layers, 20 and 14 nodes each respectively exhibited the best statistical 

metrics. The correlation coefficient was high and it was equal to 0.943, the RMSD was very 

low and it was equal to 0.194. These results were significantly better than the results of the 

MLR and ANN models. In fact, the developed MLR model implementing all molecular 

descriptors resulted in an R² of 0.67 and an RMSD of 0.51. The linear model generated one 

outlier. A constructed ANN model with 10 nodes in the hidden layer and with the sigmoid as 

an activation function, gave a relatively high R² of 0.74 and an RMSD of 0.60 adding more 

nodes to the hidden layer pushed the network into over fitting. 

From the above-mentioned metrics, one can conclude that the DNN outperformed MLR and 

ANN. It accomplished a perfect fit of the data. It was able to extract the molecular features that 

govern the phenols cytotoxicity. It could extract information provided by the molecular 
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descriptors that fed the DNN; Namely the physicochemical parameters augmented by the 

topological parameters. The DNN performances can be perceived by further examination of 

Fig. 1 which represents the cytotoxicity values calculated by the DNN model versus the 

experimental values. 

 

Figure 1: Calculated versus experimental cytotoxicity of phenols 

3.2 Applicability domain 

The applicability domain (AD) is one of the pillars to ensure the reliability of the model and its 

accuracy in predicting new compounds. [49]. 

AD is defined as a region in the chemical space containing the molecules used to train and 

validate the model. Distance to model allows to determine outliers and shows applicability of 

the constructed model to other similar molecules. 

While there are several methods to determine the applicability domain, we used leverages to 

determine the distance to the model, the resulting AD is represented in Figure 2 
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Figure 2: Applicability domain established for the model No outliers were detected 

3.3 Residual analysis 

To assess the accuracy of the established model, a residual analysis has been carried out. It 

allowed a closer scrutiny of the QSAR model and its capability to predict new compounds, 

external to the training dataset. The results are depicted in Figure 3 

 

 

 

 

 

 

 

 

 

Figure 3: Residual plot 

In figure 3, the values are evenly distributed along the X axis. The majority of the residuals lie 

in the interval [-0.5 – 0.5]. This proves the adaptability of the model and that the model is 

reliably applicable to predict the cytotoxicity of phenols to Tetrahymena pyriformis. 

3.4 The leave one out validation 

A Leave-One-Out validation procedure was carried out to evaluate the performance of the 

constructed model and to ensure that the network built was able to process new data and to 

predict the cytotoxicity of new compounds. The results were promising and exhibited a leave- 

one-out cross validated R² (q²) of 0.941 and an RMSD of 0.203. These results led to adopt the 

constructed model to predict new activities. 

3.5 The prediction of new compounds 

In this investigation, 50 phenols were used as an external prediction dataset. The applicability 

domain showed that this data is structurally similar to the training dataset (Figure 2). To 

evaluate the DNN prediction capability, we used the coefficient of determination and the 

standard deviation of prediction (SDTP) metrics. Indeed, it have been indicated that the SDTP 

correlates with the prediction accuracy [34]. This stage resulted in a high R² that equals 0.739 

and an SDTP equals 0.434. The predicted values versus the true values of cytotoxicity are 

reported in Figure 4. It shows that the established DNN model could predict correctly the 

cytotoxicity of almost all new phenols in the prediction dataset. 
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Figure 4: Cytotoxicity predicted by the DNN versus the experimental values 

In comparison to other QSAR models in the literature established by different statistical 

methods, namely MLR and partial least squares (PLS), the present model showed better 

prediction capabilities. While in some models [34], a large number of outliers (80 outliers) was 

excluded, the present model was able to fit the whole dataset. The selected molecular 

descriptors provided the DNN with precise information. The DNN was successful to extract 

the features required to accurately predict the cytotoxicity. 

3.6 Variation of cytotoxicity with respect to ClogP 

Hydrophobicity plays a major role in the cytotoxicity of many chemical compounds and 

phenols as well [50], [51] and one of the major objectives of QSAR is to shed light on the 

factors influencing the biological activity/cytotoxicity of the studied compounds. In previous 

work, we demonstrated a parabolic distribution of the anti-HIV activity with regard to 

hydrophobic parameter. Here we report the variation of the cytotoxicity of the phenols studied 

versus the hydrophobic parameter ClogP, as it was depicted by the present model. The resulting 

plot is reported in Figure 5. It is in accordance with the fact that phenols have both lipophilic 

and hydrophilic character [52]. 
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Fig. 5: Calculated values of cytotoxicity versus the ClogP parameter 

 4. Conclusion 

In the present study, a DNN model was successfully developed to predict the phenols 

cytotoxicity to Tetrahymena pyriformis. As proved by the statistical metrics and the performed 

residual analysis, the DNN model succeeded in mapping the molecular features of the phenols 

to their cytotoxicity. Unlike other modeling approaches, reported in the literature and in this 

study, where several input outliers had to be excluded, the present DNN model fit well all the 

samples and predicted accurately all the proposed new compounds. Both the fitting quality and 

the predictability accuracy were significantly high. 

Actually, two main factors played a part in this success: 

- The use of DNN ensuring an automatic feature extraction capability and a non-linear 

transformation function involved to learn chemical patterns. 

- The multi-component representation of the inputs. The present description of the 

compounds consisted on parameters that described precisely the molecular graphs of 

the compounds and hence simulating the spatial images of the molecules, and 

parameters that described the physicochemical characteristics of the molecules, caused 

mainly by the different substituents on the aromatic ring. This provided the networks 

with informative chemical features. Indeed, DNN excel in image recognition. Bearing 

in mind that a molecule is far from being a static image/graph, we proposed to add 

physicochemical parameters. They convey a valuable information on the intrinsic 

features of a molecule. Specifically, electronic and hydrophobic characteristics play a 

key role in a compound-biological system interaction. By instance, electron-releasing 

and electron-withdrawing groups affect differently the reactivity of a phenolic 

compound and hence affect their biological responses, and the hydrophobic character 

manages the penetration of a chemical compound into the biological system. 

Basically, the parameters provided to the networks should be sufficiently precise and diverse 

to ensure reliable predictions. 
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Certainly, our main objective in this QSAR investigation is to build an accurate predictive 

model. Thus, an external dataset of 50 phenols, as sparse as the training dataset and with 

structural features close to the fitting dataset (containing electron-donor, electron-attracting and 

mono, bi-, tree- substituents) served as predictive dataset. In contrast to the models reported in 

the literature, the present DNN predicted the cytotoxicity of new compounds at about 74% of 

precision. All the proposed compounds were well predicted as it was asserted by the statistical 

metrics and the residual analysis. Cytotoxicity assays may benefit largely from deep learning 

and rigorously established models. This would be of considerable help to evolve animal-free 

assays. 
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