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Abstract 

 

Portfolio optimization is a major concern of individuals and businesses across the world for 

sustainable financial and economic management of their funds. This work, as a first part of a 

portfolio optimization study of two selected businesses in Ghana, is aimed at optimizing 

separately the investments of the two businesses, to maximize their returns and minimize 

their risks under their operational constraints. The problems, being multi-objective in 

character, were modeled with the expected returns on their investments and the 

variances/standard deviations of the returns over fixed periods of time as the objective 

functions. To ensure dimensional uniformity, the objective functions were normalized and the 

Weighted Sum scalarization method employed in MATLAB to find Pareto optimal solutions 

of the models, using data from the two businesses. The results reveal that weight variations 

do not necessarily lead to many varied or diversified Pareto optimal solutions. The three 

distinct Pareto optimal solutions obtained for one of the businesses, however, suggest that the 

business could make respectively about 104.45M, 15.70M, and 15.72M Ghana Cedis returns 

on its investments with risk to return margins of 0.225%, 1.77%, and 1.76% respectively. The 

other business with only two distinct Pareto optimal solutions could make 14.67M or 30.36M 

Ghana Cedis returns with corresponding risk to return margins of 0.016% and 0.017% 

respectively. It is recommended therefore that the businesses could select the solution with 

the least risk to return margins for implementation. A second part of the work, which will be 

reported in another paper, would investigate the models under post-optimality analysis and 

the prospects for a joint investment by the two businesses. 

 

Keywords: Bi-criteria Optimization, Investment, Risk, Return, Standard Deviation, Pareto 

Optimal Solution. 

 

1. Introduction   

One of the problems faced by investors is deciding on the amounts to allocate to available 

investment portfolios in order to maximize the return while simultaneously minimizing the 

risk of the investments over a given period (Qu et al, 2017). This is a very crucial decision-

making task that investors and portfolio managers alike have to address appropriately in order 

to ensure the growth and sustainability of their businesses. 
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Portfolio investment problems, since the ground-breaking work of Harry Markowitz 

(Markowitz, 1952), have traditionally been treated as single objective optimization problems 

where either risk is minimized or expected return is maximized. Makowitz’s work forms the 

foundation of modern Portfolio theory. He used the model to describe the impact of Portfolio 

diversification by the number of securities within the Portfolio and their covariance 

relationship (Souza & Megginson, 1999). Markowitz states that, the expected return (Mean) 

and the risk (Variance or standard deviation of the expected return) of investments are the 

main criteria for portfolio selection and construction (Markowitz, 1959). Despite the fact that 

the Markowitz Model takes a narrow view, which is that it is premised on optimizing a single 

objective, it is undisputed that it is the most widely used model by researchers and 

practitioners in real world applications (Fama & French, 2004). 

 

Typically, an investor may seek to select from available investment portfolios which yield 

maximum return or profit, or may want to decide on the amounts to invest in known (or 

existing) investment portfolios in order to maximize the total return, or may want to decide 

on a combination of both types. These three types of portfolio investments decision making 

are optimization problems (Kolm et al, 2014), and have been approached in diverse ways as 

such, using mathematical programming techniques (Bagchi, 2014; Keshavarz & Toloo, 

2015). Depending on the nature of the problem and the interests or focus of the decision 

maker, the formulated mathematical programming models may be linear, nonlinear, integer 

programming, mixed integer programming, or multi-criteria programming. Even so, a large 

part of the literature in the subject area appears to indicate that a single objective formulation 

in which return alone or risk alone are optimized, subject to identified constraints of the 

problem, dominate. Comparatively fewer works have approached the problem as multi-

criteria programming. Nevertheless, the multi-criteria approach is a more realistic one since it 

seeks to account for all the relevant criteria or goals (not just one), and therefore, provides 

greater utility to the investor or would-be investor (Ponsich et al, 2013; Skolpadungket et al, 

2007; Vedarajan,1997).  

 

Some notable research works in this study area include Kamil & Kwan (2004) who applied 

the Markowitz model for portfolio analysis on assessing the performance of selected stocks 

from the stock market. The work suggests that long term (weekly) investments are more 

likely to perform better than short term (daily) investment, with the same Portfolio. In the 

daily analysis of data for the Portfolio, a yield of a small positive covariance was made but, a 

weekly analysis of the same data yielded a negative covariance, which is good for businesses.  

The work only considered analyzing the performance of selected stocks. It did not take 

interest in maximizing returns or minimizing risks for the investor. In a model proposed by  

Wagner (2002), the decision maker is provided with the opportunity to access an ex-ante idea 

about a Portfolio selection. This efficiently helps reduce regrets the decision maker could 

have faced. The paper incorporated a rational portfolio selection criteria as well as 

benchmarking. Pandey (2012) worked on optimal Portfolio formation, using real data, subject 

to different constraint sets. The concept of efficient Portfolio formed the basis for decision 

making. Given a level of risk, the highest Portfolio return was obtained from the efficient 

frontier. On the risk-return curve, the investor is able to have a reliable insight into how to 
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efficiently manage Portfolio selection in order to reduce risk or maximize returns. Miettinen 

& Mäkelä (2002) conducted an extensive work on multi-objective optimization of portfolio. 

In their work, they were only concerned with solution methods to multi-objective portfolio 

optimization problems. To reduce the complexity of large-scale portfolio optimization, Qu et 

al (2017) proposed two asset preselection procedures that consider return and risk of 

individual asset and pairwise correlation to remove assets that may not potentially be selected 

into any portfolio. To test the effectiveness of the proposed methods, a Normalized 

Multiobjective Evolutionary Algorithm based on a decomposition algorithm and several other 

commonly used multiobjective evolutionary algorithms were applied and compared. 

 

This paper contributes to the literature in the subject area using the multi-criteria approach in 

the context of real investment problems involving two businesses in Ghana and based on real 

data from them. Specifically a bi-objective optimization model is formulated to 

simultaneously optimize risk and return on their investments in terms of the amounts of funds 

to invest in existing investment sreas. .The next section presents the methodology adopted in 

this work. The next section after that presents the results and discussions of the research. The 

last section concludes the paper and presents some recommendations. 

 

2. Methodology 

 

2.1 Multicriteria Optimization 

In the context of constrained optimization, Multi-criteria optimization is concerned with 

optimizing simultaneously two or more objective functions, subject to a number of 

constraints (Marler & Arora, 2004). Without loss of generality, the problem is denoted by: 

 

               𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑓(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)]                                                                       

         Subject to    𝑥 ∈ 𝑋 ⊂ 𝑅𝑛                                                                                                                   

(2.1)                                                                          

where 𝑓𝑖  is the  𝑖𝑡ℎ objective function ( 𝑖 = 1,2, … , 𝑘), 𝑥 is an 𝑛 vector of decision 

alternatives and 𝑋 is the set of feasible decision alternatives, also called feasible decision set, 

in which all the constraints are satisfied. The vector function 𝑓(𝑥) defines a criterion set in 

the space  𝑅𝑘 from which points in the feasible decision set are mapped (Deb 2001; Miettinen 

& Makela, 2002). Unlike single objective problems, (2.1) is generally characterized by 

conflicting or incommensurable criteria and therefore by many solutions (Miettinen, 2000). 

As a result, the notion of optimality as it is known in single objective optimization becomes 

untenable and requires re-definition (Miettinen, 2000).   

 

There are several notions of optimality, such as, Pareto optimality, Lexicographic optimality, 

Min-max optimality and Lexicographic Min-max optimality (Ehrgott, 2008; Marler & Arora, 

2004), the most popular, however, is Pareto optimality which is very much related to the 

concept of dominance and defined as: 
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               A solution 𝑥∗ ∈ 𝑋 is said to be Pareto optimal (or non-dominated) 

               if 𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝑋 and there exists   𝑥 ∈ 𝑋  such that 𝑓( 𝑥∗) < 𝑓(𝑥).                             

(2.2)                                                                                                                                                                             

  

Other notions of Pareto optimality are Strong, Weak and Proper Pareto optimality. They are 

defined respectively as:  

 

              A solution 𝑥∗ ∈ 𝑋 is said to be strongly Pareto optimal if 𝑓(𝑥∗) < 𝑓(𝑥) for all 𝑥 ∈ 𝑋                      

(2.3) 

              A solution 𝑥∗ ∈ 𝑋 is said to be weakly Pareto optimal if 𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 ∈ 𝑋                        

(2.4)                                     

              A solution 𝑥∗ ∈ 𝑋 is said to be Properly Pareto optimal if it is Pareto optimal and 

there exists a positive  

              number 𝛿 such that for all 𝑓𝑖(𝑥) and 𝑥 ∈ 𝑋 satisfying 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥∗), there exists 

𝑓𝑗(𝑥) > 𝑓𝑗(𝑥∗) 

               such that: 

                                  
𝑓𝑖(𝑥∗)−𝑓𝑖(𝑥)

𝑓𝑗(𝑥)−𝑓𝑗(𝑥∗)
≤ 𝛿                                                                                                             

(2.5)       

                                                                                  

It is clear from (2.3) and (2.4) that strong and weak Pareto optimality are special cases of 

Pareto optimality as defined in (2.2) with the two notions being particular instances of it. 

Proper Pareto optimality as given in (2.5) on the other hand defines a limit or bound on the 

Pareto optimal solutions (Ehrgott, 2008). The set of all Pareto optimal solutions in the 

feasible decision set and its corresponding image in the criterion set is sometimes called 

efficient set, non-inferior set, or non-dominated set. The Pareto optimal solutions in the 

criterion set constitute the Pareto front (Ehrgott, 2008). 

 

Since there is no unique solution to the problem (2.1) but rather many equally good solutions 

(i.e. Non-dominated solutions), the decision about which one to select for implementation 

becomes subjective and depends very much on the preferences of the decision maker as it 

does the analyst (Miettinen, 2000). There is therefore always some trade-offs in the values of 

the objective functions that have to be incurred by a decision maker in selecting any of the 

Pareto optimal solutions. The chosen solution is therefore referred to as Compromise 

Solution (Li & Zhang, 2009). 

 

2.2 Solution Method 

 

Many methods of solution have been developed for solving (2.1) and the choice of a 

particular method depends on the nature of the problem as well as the expectations of the 

analyst and decision maker. In general the methods can be classified as Scalar or Pareto (Deb, 

2001). Whereas the scalar methods are suitable for continuous, differentiable and 

deterministic problems the Pareto methods involve use of heuristic or meta-heuristic 
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algorithms and are suitable for cases that depart from the described (Deb, 2001). Classically, 

the weighted Sum method is the most popular scalar method. Other scalar methods are the 

constraint method, the global criterion method, and goal programming among many others 

(see Marler and Arora, 2010).  

 The weighted sum method, as the name suggests, transforms the vector objective function in 

a given problem into a scalar one in a convex combination of the objective functions using  

weights (Marler & Arora, 2010). It is defined by: 

 

               𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) = 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + ⋯ + 𝑤𝑘𝑓𝑘(𝑥)                                                                   

(2.6) 

              Subject to  𝑥 ∈ 𝑋  and   𝑤1 + 𝑤2 + ⋯ + 𝑤𝑘 = 1,    𝑤𝑖 > 0   ∀ 𝑖         

 

where 𝑤𝑖 is the weight of the 𝑖𝑡ℎ objective function 𝑖 = 1,2, … , 𝑘.When 𝑤𝑖 is varied, it 

produces a different scalar problem as far as the weights are concerned, and yields 

corresponding Pareto optimal solutions (Marler and Arora, 2010). Consequently, the entire 

set of Pareto optimal solution may be generated .Though this method works so well with 

convex problems, it is inefficient with non-convex ones as well as problems with many 

objective functions (Marler and Arora, 2010). It requires little or no input from the user.  

 

2.2 Model Formulation 

Consider that a fixed amount of money, M, is to be invested in n known investment 

portfolios, each of which has a known history of return. Let the problem be to decide on the 

amounts to put in each investment area so that the total return on the investments is 

maximized while the total variability in future payments is minimized. Let 𝑥𝑖 (𝑖 = 1,2, … , 𝑛) 

be the amount of money to put in the 𝑖𝑡ℎ  investment and let 𝑟𝑖𝑘 be the rate of return on 

investment 𝑖 in the time period 𝑘 in the past (𝑘 = 1,2, … , 𝑝). If the past history of payments is 

indicative of future performance, then the expected future return per unit currency from 

investment 𝑖 is given by  

                        𝐸𝑖 =
1

𝑝
∑ 𝑟𝑖𝑘

𝑝
𝑘=1                                                                                                                      

(2.7) 

The expected return from all the investments therefore is: 

                       𝐸 = ∑ 𝐸𝑖𝑥𝑖
𝑛
𝑖=1                                                                                                                         

(2.8) 

A measure of total variability in future payments based on past returns is given by  

                      𝑍 =  
1

𝑝
∑ (𝑟1𝑘𝑥1 + 𝑟2𝑘𝑥2 + ⋯ + 𝑟𝑛𝑘𝑥𝑛 − 𝐸)2𝑝

𝑘=1                                                                    

(2.9) 

Which is the average over the past 𝑝 time periods over the squared deviation between the 

total return from an allocation (𝑥1, 𝑥2, … , 𝑥𝑛) and the expected value of the total return. 

The result (2.9) in statistical terms is the variance of the total returns. Substituting (2.8) in 

(2.9) and rearranging yields: 
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                𝑍 =
1

𝑝
[(𝑟𝑖𝑘 − 𝐸1)𝑥1 + (𝑟2𝑘 − 𝐸2)𝑥2 + ⋯ + (𝑟𝑛𝑘 − 𝐸𝑛)𝑥𝑛]2 

                    = ∑ ∑ ∑ (𝑟𝑖𝑘 − 𝐸𝑖)(𝑟𝑗𝑘 − 𝐸𝑗)𝑥𝑖𝑥𝑗 = ∑ ∑ 𝛿𝑖𝑗
2 𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1

𝑝
𝑘=1      

Where: 

              𝛿𝑖𝑗
2 = ∑ (𝑟𝑖𝑘 − 𝐸𝑖)(𝑟𝑗𝑘 − 𝐸𝑗)𝑝

𝑘=1 =
1

𝑝
∑ 𝑟𝑖𝑘𝑟𝑗𝑘 −

1

𝑝2 (∑ 𝑟𝑖𝑘)(∑ 𝑟𝑗𝑘)𝑝
𝑘=1

𝑝
𝑘=1

𝑝
𝑘=1   

 

is a covariance matrix ( i.e.  𝐶 ≡ [𝛿𝑖𝑗
2 ]). We may denote therefore:  

 

                 𝑍 = ∑ ∑ 𝛿𝑖𝑗
2 𝑥𝑖𝑥𝑗 = 𝑋𝑇𝐶𝑋 𝑛

𝑗=1
𝑛
𝑖=1                                                                                                

(2.10) 

 

Where 𝐶 is a covariance matrix and 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇. The Portfolio optimization problem 

is therefore modeled as:  

              

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸(𝑋) = ∑ 𝐸𝑖𝑥𝑖
𝑛
𝑖=1

            𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍(𝑋) = ∑ ∑ 𝛿𝑖𝑗
2 𝑥𝑖𝑥𝑗 

𝑛
𝑗=1

𝑛
𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖
𝑛
𝑖=1 ≤ 𝑀

                          𝑥𝑖 ≥ 0 𝑖 = 1,2, … , 𝑛

                                                                              

(2.11) 

 

It is observed that 𝐸(𝑋) is weakly convex, since it is linear. Also 𝑍(𝑋) is in quadratic form, 

and so it is convex. The constraint ∑ 𝑥𝑖
𝑛
𝑖=1  is linear for all 𝑖 and hence weakly convex. 

Therefore, (2.11) is a bi-criteria convex optimization problem in the class of continuous 

differentiable constrained convex multi-criteria optimization problem. Consequently, it can 

be solved efficiently by any scalar method, such as the Weighted Sum Scalarization. 

Therefore, the weighted sum method corresponding to the model (2.11) is given by: 

 

                  𝑀𝑎𝑥 [𝑤𝑖𝐸(𝑋) − (1 − 𝑤𝑖)(𝑍(𝑋))] 

 

                  Subject to   ∑ 𝑥𝑖
𝑛
𝑖=1 = 𝑀     𝑖 = 1,2, … , 𝑛                                                                             

(2.12) 

                                   𝑥𝑖 ≥ 0 ∀ 𝑖, 𝑤𝑗 > 0, ∑ 𝑤𝑗 = 1, 𝑗 = 1,2, … . 𝑛         

As a generating or posteriori method (Mosavi, 2010), (2.12) may be used to generate a 

portion of the Pareto front through repeated sets of weights variations without the 

involvement of the decision maker; the solutions can then be presented to the decision maker 

to select the best compromise solution. 

 

Transformation techniques are sometimes used to normalize the objective functions to make 

them dimensionless so as to enable appropriate comparison of their values in the solution 

search process.  A notable transformation approach proposed by Proos et al (2001) to be used 

in this work is: 
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             𝑓𝑖
𝑛𝑜𝑟𝑚 =

𝑓𝑖(𝑥)

 |𝑓𝑖
𝑜𝑝𝑡|

 ,   0 ≤ 𝑓𝑖
𝑛𝑜𝑟𝑚 ≤ 1,   𝑖 = 1,2, … , 𝑘                                                                        

(2.13) 

 

where 𝑓𝑖(𝑥)  and |𝑓𝑖
𝑜𝑝𝑡|  are respectively the  𝑖𝑡ℎ objective function value and its unique 

positive optimum value.  

 

In situations where more than a single Pareto optimum solution is generated for consideration 

by the decision maker and consequent selection of an implementable one, it can be helpful, 

where possible, to develop a technique for assessing the solutions to aid the decision maker in 

selecting a preferred solution (Bagchi, 2014). In this work, a ranking scheme will be adopted 

to provide a single measure for the Pareto optimal objective function values in each solution. 

Specifically, a risk to expected return profile (RERP) measure given by: 

 

                 𝑅𝐸𝑅𝑃 = (
√𝑍𝐴(𝑥)

𝐸𝐴(𝑥)
⁄ ) ∗ 100%                                                                                         

(2.14) 

 

Which compares the standard deviation to the expected return for a Pareto optimal solution, 

will be used. The RERP will provide an objective basis for selecting a particular Pareto 

optimal solution for implementation, since lower values for the RERP are better than higher 

values when comparing both values of the objective functions.  

3. Results and Discussions 

In this section the investment problems of the two businesses, herein referred to as Investor A 

and Investor B, are modeled as bi-criteria optimization and applied to data obtained from the 

two for the purpose. The results from running the models are presented in the following 

succeeding sections and discussed. 

 

3.1 Model for Investor A 

 

Investor A runs a business in which he purchases a variety of goods and sells for profit. In the 

period studied, Investor A has four areas of investment with projected rates of returns over 

an. eight months period. Investor A has a fixed amount of Two Fifty Thousand Ghana Cedis 

(GHS 250,000) that he wants to invest in the four identifiable areas of investment over the 

known period of time. The desire is to determine how much to invest in the identifiable areas 

of investment in order to maximize return and minimize at the same time variability in the 

returns over the period. He has decided to invest up to the total capital available to him; 

however, he has determined the following restrictions: That the combined amounts invested 

in the first two investment areas (i.e. A1 and A2) and the last two investment areas (i.e. A3 

and A4) respectively (see Table 4.1) should not exceed Ninety Thousand Ghana Cedis (GHS 

90,000); at least Five Thousand Ghana Cedis (GHS 5,000) each should be invested in 
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investment areas A1 and A3, while at least Twenty Five Thousand Cedis (GHS 25,000) and 

Four Thousand Cedis (GHS 4,000) respectively must be invested in areas A2 and A4. 

The detailed data associated with this problem is given in Table 3.1. The table shows the four 

investment areas and the projected rates of return over the eight (8) months period. In order to 

formulate the required objective functions based on the data in Table 3.1, Table 3.2 is 

constructed. 

 

Table 3.1: Initial Data from Investor A 

 

Table 3.2: Computing Necessary Parameters for Model of Investor A 

K 𝑟1𝑘 𝑟2𝑘 𝑟3𝑘 𝑟4𝑘 𝑟1𝑘
2  𝑟2

2𝑘 𝑟3𝑘
2  𝑟4𝑘

2  𝑟1𝑘𝑟2𝑘 𝑟1𝑘𝑟3𝑘 𝑟1𝑘𝑟4𝑘 𝑟2𝑘𝑟3𝑘 𝑟2𝑘𝑟4𝑘 𝑟3𝑘𝑟4𝑘 

 

1 
1

2 

2

0 

1

0 

1

5 

14

4 
400 100 225 240 120 180 200 300 

15

0 

2 
1

0 

1

0 

2

0 

1

0 

10

0 
100 400 100 100 200 100 200 100 200 

3 
1

5 

1

0 

1

0 

1

0 

22

5 
100 100 100 150 150 150 100 100 100 

4 
1

0 

2

0 

1

0 

1

0 

10

0 
400 100 100 200 100 100 200 200 100 

5 
1

0 
5 

1

0 

1

5 

10

0 
25 100 225 50 100 150 50 75 150 

6 
1

0 
5 5 

1

5 

10

0 
25 25 225 50 50 150 25 75 75 

7 
1

0 

1

0 

1

0 
5 

10

0 
100 100 25 100 100 50 100 50 50 

8 
1

0 

1

2 

1

2 
5 

10

0 
144 144 25 120 120 50 144 60 60 

Tot

al 

8

7 

9

2 

8

7 

8

5 

96

9 

129

4 

109

4 

102

5 

101

0 
940 930 

101

9 
960 885 

 

 

Investment Areas & Rates of Return (%)  

Period A1 A2 A3 A4 

September 2020 12 20 10 15 

October 2020 10 10 20 10 

November 2020 15 10 10 10 

December 2020 10 20 10 10 

January 2021 10 5 10 15 

February 2021 10 5 10 15 

March 2021 10 10 5 5 

April 2021 10 12 10 5 
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The resulting model is: 

           𝑀𝑎𝑥 𝐸𝐴(𝑥) = 87𝑥𝐴1 + 92𝑥𝐴2 + 87𝑥𝐴3 + 85𝑥𝐴4 

 

          Min  𝑍𝐴(𝑥) = (𝑥𝐴1 𝑥𝐴2 𝑥𝐴3 𝑥𝐴4) [

2.9 1.2 −0.8 0.7
1.2 29.5 2.3 −2.2

−0.8
0.7

2.3
−2.2

18.5
−4.9

−4.9
15.2

] (

𝑥𝐴1

𝑥𝐴2

𝑥𝐴3

𝑥𝐴4

) 

 

         Subject to:    𝑥𝐴1 + 𝑥𝐴2 + 𝑥𝐴3 + 𝑥𝐴4 ≤ 250000 

 

                              𝑥𝐴1 + 𝑥𝐴2 ≤ 90000; 

                              𝑥𝐴3 + 𝑥𝐴4 ≤ 90000; 

                                  𝑥𝐴1 ≥ 5000;   

                                  𝑥𝐴2 ≥ 25000;  

                                  𝑥𝐴3 ≥ 50000;  

                                  𝑥𝐴4 ≥ 40000 

 

The ideal solutions or unique maximum and unique minimum of the objective functions 

obtained separately as: 

 

   𝑀𝑎𝑥 𝐸𝐴(𝑥) = 16,005,000 and Min  𝑍𝐴(𝑥) =26,070,000,000 

 

The model with normalized objective functions is: 

 

 

        𝑀𝑎𝑥[ 𝑤𝑖𝐸𝐴(𝑥)𝑛𝑜𝑟𝑚 − (1 − 𝑤𝑖)(𝑍𝐴(𝑥)𝑛𝑜𝑟𝑚)] 

 

         Subject to:    𝑥𝐴1 + 𝑥𝐴2 + 𝑥𝐴3 + 𝑥𝐴4 ≤ 250000 

                              𝑥𝐴1 + 𝑥𝐴2 ≤ 90000; 

                              𝑥𝐴3 + 𝑥𝐴4 ≤ 90000; 

                              𝑥𝐴1 ≥ 5000; 

                              𝑥𝐴2 ≥ 25000; 

                              𝑥𝐴3 ≥ 50000; 

                              𝑥𝐴4 ≥ 40000 

                              𝑤𝑖 + (1 − 𝑤𝑖) = 1,     𝑤𝑖 > 0  ∀  𝑖 

 

where 𝐸𝐴(𝑥)𝑛𝑜𝑟𝑚 and 𝑍𝐴(𝑥)𝑛𝑜𝑟𝑚 are the normalized objective functions and 𝑤𝑖 is the 𝑖𝑡ℎ 

weight. By varying 𝑤𝑖 from 0.1 to 0.9 in steps of 0.1, Pareto optimal solutions were generated 

for the model. 

3.2 Solution of Model for Investor A 

The resulting Pareto optimal solutions for the model of Investor A are displayed in Table 3.3. 

The table shows 20 weight pairs and the corresponding Pareto optimal solutions. The table 
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indicates that weighting of the objective functions did not result in a wide variety of Pareto 

optimal solutions. The distinct Pareto optimal solutions displayed in Table 3.3 are extracted 

from it and presented in Table 3.4.   

 

Table3.3: Pareto Optimal Solutions for Selected Weights for Model of Investor A 

     

Table 3.4: Varied Sets of Pareto Optimal Solutions for Investor A  

              Variables                              Optimum Values 

𝑥𝐴1 5,000 65,000 61,982 

𝑥𝐴2 25,000 25,000 28,018 

𝑥𝐴3 50,000 50,000 50,000 

𝑥𝐴4 40,000 40,000 40,000     

𝐸𝐴(𝑥) 104,450,000 15,705,000 15,720,090 

𝑍𝐴(𝑥) 55,140,000,000 77,090,000,000 76,620,000,000 

𝑆𝐷 = √𝑍𝐴(𝑥) 234,819 277,651 276,803 

             RERP 0.225% 1.768% 1.761% 

3.3 Model for Investor B 

Unlike Investor A, Investor B invests in three main areas which are distinct from those of 

Investor A with their projected rates of return covering a 12 month period as given in Table 

3.5. For the period under study, Investor B had up to 220,000 Cedis Capital to invest in the 

three areas of investment B1, B2, and B3. He had determined that it is prudent not to invest 

𝑤𝑖 (1 − 𝑤𝑖) 
 

Pareto optimal variables Values Optimum E(x) & Z(x) values 

𝑥𝐴1 𝑥𝐴2 𝑥𝐴3 𝑥𝐴4 E(x) Z(x) 

0.1 0.9 5000 25000 50000 40000 104,450,000 55,140,000,000 

0.2 0.8 5000 25000 50000 40000 104,450,000 55,140,000,000 

0.3 0.7 5000 25000 50000 40000 104,450,000 55,140,000,000 

0.4 0.6 5000 25000 50000 40000 104,450,000 55,140,000,000 

0.5 0.5 5000 25000 50000 40000 104,450,000 55,140,000,000 

0.6 0.4 5000 25000 50000 40000 104,450,000 55,140,000,000 

0.7 0.3 5000 25000 50000 40000 104,450,000 55,140,000,000 

0.8 0.2 5000 25000 50000 40000 104,450,000 55,140,000,000 

0.9 0.1 5000 25000 50000 40000 104,450,000 55,140,000,000 

0.99 0.01 61982 28018 50000 40000 15,720,090 76,720,000,000 

0.98 0.02 65000 25000 50000 40000 15,720,090 76,720,000,000 

0.97 0.03 65000 25000 50000 40000 15,720,090 76,720,000,000 

0.96 0.04 65000 25000 50000 40000 15,720,090 76,720,000,000 

0.95 0.05 65000 25000 50000 40000 15,705,000 77,090,000,000 

0.94 0.06 65000 25000 50000 40000 15,705,000 77,090,000,000 

0.93 0.07 65000 25000 50000 40000 15,705,000 77,090,000,000 

0.92 0.08 65000 25000 50000 40000 15,705,000 77,090,000,000 

0.91 0.09 65000 25000 50000 40000 15,705,000 77,090,000,000 

0.90 0.1 65000 25000 50000 40000 15,705,000 77,090,000,000 

0.89 0.11 65000 25000 50000 40000 15,705,000 77,090,000,000 
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more than 90,000 in investment areas B1 and B2 combined. Similarly, he had determined that 

the combined investments in areas B1 and B3 should not exceed 100,000 Cedis, while the 

combined investments of areas B2 and B3 should not exceed 200,000. His desire was to 

maximize his return over the period of the investments and minimize the variability of his 

return over the period. 

 

Since Investor B’s problem is similar to that of Investor A’s, the same procedures applied to 

model, solve and analyse Investor A’s problem are applied to investor B’s problem. 

Furthermore, that would facilitate the undertaking of further investigations, later in a second 

paper, about the sensitivity of the models and possible benefit of a joint investment by the 

two businesses. 

 

Table 3.5: Initial Data from Investor B 

 

Table 3.6:  Computed Necessary Parameters for Model of Investor B 

k 𝑟1𝑘 𝑟2𝑘 𝑟3𝑘 𝑟1𝑘
2   𝑟2𝑘

2  𝑟3𝑘
2  𝑟1𝑘𝑟2𝑘 𝑟1𝑘𝑟3𝑘 𝑟2𝑘𝑟3𝑘 

1 20 15 20 400 225 400 300 400 300 

2 20 15 10 400 225 100 300 200 150 

3 15 15 15 225 225 225 300 225 225 

4 20 25 10 400 625 100 500 200 250 

5 20 10 10 400 100 100 200 200 100 

6 10 18 20 100 324 400 180 200 360 

7 15 20 30 225 400 900 300 450 600 

8 15 15 20 225 225 400 225 300 300 

9 10 15 15 100 225 225 150 150 250 

10 5 20 10 25 400 100 100 50 200 

11 10 15 20 100 225 400 150 200 300 

12 20 20 30 400 400 900 400 600 600 

Total 180 203 210 3000 3599 3890 3105 3175 3610 

 

                             Period Areas and Rates of Returns (%) 

B1 B2 B3 

January 20 15 20 

February 20 15 10 

March 15 15 15 

April 20 25 10 

May 20 10 10 

June 10 18 20 

July 15 20 30 

August 15 15 20 

September 10 15 15 

October 5 20 10 

November 10 15 20 

December 20 30 10 
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The expected value function 𝐸𝐵(𝑥) and the variance function 𝑍𝐵(𝑥) which denote the 

objective functions of Investor B, where 𝑥 = (𝑥𝐵1, 𝑥𝐵2, 𝑥𝐵3)𝑇, are constructed by first 

computing the values in Table 3.6. As was done for Investor A, the Weighted Sum model for 

investor B using normalized objective functions is presented below: 

          𝑀𝑎𝑥[𝑤𝑖𝐸𝐵(𝑥)𝑛𝑜𝑟𝑚 − (1 − 𝑤𝑖)𝑍𝐵(𝑥)𝑛𝑜𝑟𝑚] 

 

         Subject to:    𝑥𝐵1 + 𝑥𝐵2 + 𝑥𝐵3 ≤ 220000 

                              𝑥𝐵1 + 𝑥𝐵2 ≤ 90000  

                              𝑥𝐵1 + 𝑥𝐵3 ≤ 100000 

                              𝑥𝐵2 + 𝑥𝐵3 ≤ 200000 

                              30000 ≤ 𝑥𝐵1 ≤ 50000 

                              25000 ≤ 𝑥𝐵2 ≤ 90000 

                              20000 ≤ 𝑥𝐵3 ≤ 200000 

                               𝑤𝑖 > 0,   𝑤𝑖 + (1 − 𝑤𝑖) = 1  ∀ 𝑖  

 

3.4 Solution of Model of Investor B 

 

Similar to the solution outcome for the model of Investor A, the current model produced 

mostly the same Pareto optimal solutions with variations of weight sets. The two distinct 

results obtained for weight sets {0.05, 0.95} and {0.9, 0.1} in all the variations are presented 

in Table 3.7. 

 

Table 3.7: Pareto Optimal solutions for Investor B 

              Variables                Optimum values 

xB1(𝑥) 30,000 32,059 

xB2(𝑥) 25,000 57,941 

xB3(𝑥) 20000 61,090 

EB(𝑥) 14,675,000 30,361,543 

ZB(𝑥) 55,832,500,000 294,177,317,900 

         𝑆𝐷 = √ZB(x) 236,289 542,381 

             RERP 0.016% 0.017% 

3.5 Discussions 

Table 3.4 presents three sets of Pareto optimal solutions. The first indicates that Investor A 

could expect to make about 104.5M Ghana Cedis return with a standard deviation of about 

234.8K Ghana Cedis on his investments, if he invests 5K, 25K, 50K, and 40K Ghana Cedis 

respectively in investment areas A1, A2, A3 and A4. The second set indicates that the 

investor could make 15.7M Ghana Cedis with standard deviation of 277.8K Ghana Cedis, if 

he invests 65K, 25K, 50K, and 40K Ghana Cedis respectively in the areas A1 to A4. Similar 

interpretation follows for the third set. The corresponding standard deviations which measure 

the risk levels for the investments were about 234.8K, 277.6K, and 276.8K Ghana Cedis 

respectively. They indicate that the expected returns for each of the three sets of investments 

could vary upwards or downwards by up to those margins. The RERP values indicate that the 
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first set of solutions yields a least value of 0.2%. Therefore, Investor A could select that for 

implementation.  

 

Similar interpretation as given for the solutions for Investor A applies to the results displayed 

in Table 3.5 for Investor B.  Therefore, for instance (from the first set of solutions in Table 

3.5), Investor B could expect to make 14.6M Ghana Cedis if he invests 30K, 25K and 20K 

Ghana Cedis respectively in B1, B2, and B3. However, his return can vary upward or 

downward by margins of up to 236.2K Ghana Cedis. In terms of risk to return profile given 

by RERP values, Investor be may select the solution with RERP value of 0.016% for 

implementation. 

 

It is clear that the weighted sum scalarization solution method did not have any significant 

impact on the model as far as finding diverse Pareto optimal solutions is concerned and this 

cannot be attributed to a non-convex Pareto front (the optimization models were convex), nor 

to many objective functions (there were only two), Therefore, that not many diverse solutions 

were obtained could be because the Pareto fronts were weakly convex and thus solutions 

hardly changed from one point on their surfaces to another. This is worth investigating in a 

future research using other scalar methods. 

The solutions themselves indicated that the two investors did not have to invest their entire 

capital in the various investment areas. This could be dictated by their operational restrictions 

which were the constraints of the models. Nevertheless the results showed that the investors 

could still make sizable returns and therefore profits over their investment periods, taking into 

account however the risks to expected return profiles.  

4. Conclusions 

This work sought to investigate, from a multi-objective optimization stand-point the 

outcomes for two separate investment problems of two businesses in Ghana. The aim was to 

optimize separately but simultaneously their risks and returns on their investments based on 

real data collected separately from them. A bi-objective nonlinear constrained convex 

optimization model was thus formulated for the two. The results have indicated that maximal 

returns and minimal risks are possible for the two businesses even though only two or three 

possibilities were available for them to consider.  

The two or three possible solution sets are suspected to be the result of weakly convex Pareto 

fronts that did not allow for large diversity of solutions. This, however, can be invested 

further in a future work. Other solution methods can also be used, such as the constraint 

method. As an immediate follow-up to this study, to be reported as Part 2 to this paper, 

investigation of the sensitivity of the models to parameter variations would be explored. 

Furthermore, the prospects for a joint investment of the two businesses would be 

investigated. 

 

 

 

file:///G:/New%20folder%20(2)/New%20folder/IJSMR/paper/2021/SMR10085/www.ijsmr.in


141 | International Journal of Scientific and Management Research 5(6) 128-142 

 

Copyright © IJSMR 2022 (www.ijsmr.in) 

References 

1) Qu B. Y., Zhou Q., Liang J. J., and Suganthan P. N. (2017) Large-Scale Portfolio 

Optimization using Multiobjective Evolutionary Algorithms and Preselection 

Methods, Hindawi Mathematical Problems in Engineering, 

https//doi.org/10.115/2017/4197914 

2) Markowitz, H. “Portfolio selection,” The Journal of Finance, vol. 7, no. 1, pp. 77–91, 

1952. 

3) Souza J. D. and Megginson W. L. (2002) The Financial & Operating Performance of 

Privitized Firms during the 1990s, Wiley Online Library, https//doi.org/10.1111/0022-

108200150 

4) Markowitz H. M. (1959) Portfolio Selection: Efficient Diversification of Investments, 

John Wiley & Sons Inc.,New York. 

5) Fama, E. F., & French, K. R. (2004). The Capital Asset Pricing Model : Theory and 

Evidence. 18(3), 25–46. 

6) P. N. Kolm, R. Tutuncu, and F. J. Fabozzi (2014) “60 Years of ¨ portfolio 

optimization: practical challenges and current trends,” European Journal of 

Operational Research, vol. 234, no. 2, pp. 356 – 371. 

7) Bagchi, T. P. (2014). Pareto-Optimal Solutions for Multi-objective Production 

Scheduling Problems, Lecture Notes in Computer Science, January 1993, pp 458 – 

471. 

8) Keshavarz, E., & Toloo, M. (2015). Efficiency status of a feasible solution in the 

Multi-Objective Integer Linear Programming problems: A DEA methodology. 

Applied Mathematical Modelling, 39(12), 3236–3247. 

https://doi.org/10.1016/j.apm.2014.11.032. 

9) Ponsich, A. L. Jaimes, and C. A. C. Coello (2013) “A survey on multiobjective 

evolutionary algorithms for the solution of the portfolio optimization problem and 

other finance and economics applications,” IEEE Transactions on Evolutionary 

Computation, vol. 17, no. 3, pp. 321–344. 

10) P. Skolpadungket, K. Dahal, and N. Harnpornchai (2007) “Portfolio optimization 

using multi-objective genetic algorithms,” in Proceedings of the IEEE Congress on 

Evolutionary Computation (CEC ’07), pp. 516–523, Singapore, September 2007. 

11) G. Vedarajan, L. C. Chan, and D. Goldberg (1997) “Investment portfolio optimization 

using genetic algorithms, Proceedings of the Late Breaking Papers at the Genetic 

Programming Conference, pp. 255–263. 

12) Kamil, A. A, & Kwan, M. (2004). Extension of Markowitz Model for Portfolio 

Analysis. WSEAS Transactions on Mathematics, 3(3), pp 641–646. 

13) Wagner, N. (2002). On a model of portfolio selection with benchmark. Journal of 

Asset Management, 3(1), 55–65. https://doi.org/10.1057/palgrave.jam.2240065 

14) Pandey, M. (2012). Application of Markowitz model in analysing risk and return: A 

case study of bse stock. Risk Governance and Control: Financial Markets and 

Institutions, 2(1), 7–15. https://doi.org/10.22495/rgcv2i1art1 

15) Miettinen, K., & Mäkelä, M. M. (2002). On scalarizing functions in multiobjective 

optimization. OR Spectrum, 24(2), 193–213. https://doi.org/10.1007/s00291-001-

file:///G:/New%20folder%20(2)/New%20folder/IJSMR/paper/2021/SMR10085/www.ijsmr.in
https://doi.org/10.1016/j.apm.2014.11.032
https://doi.org/10.1057/palgrave.jam.2240065


142 | International Journal of Scientific and Management Research 5(6) 128-142 

 

Copyright © IJSMR 2022 (www.ijsmr.in) 

0092-9 

16) Marler, R., & Arora, J. (2004). Survey of Multi-Objective Optimization Methods for 

Engineering. Structural and Multidisciplinary Optimization, 26, 369–395. 

https://doi.org/10.1007/s00158-003-0368-6 

17) K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (2001) John 

Wiley & Sons, West Sussex, UK. 

18) Miettinen . K. M. (2000). Nonlinear Multiobjective Optimization, SIAM Review 42 

(2) 339 – 341. 

19) Ehrgott, M. (2008). Multiobjective Optimization. AI Magazine, 29(4), 47–57. 

https://doi.org/10.1609/aimag.v29i4.2198 

20) H. Li and Q. Zhang (2009) Multiobjective optimization problems with complicated 

Pareto sets, MOEA/D and NSGA-II, IEEE Transactions on Evolutionary 

Computation, vol. 13, no. 2, pp. 284–302. 

21) Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective 

optimization : new insights. June. https://doi.org/10.1007/s00158-009-0460-7 .   

file:///G:/New%20folder%20(2)/New%20folder/IJSMR/paper/2021/SMR10085/www.ijsmr.in
https://doi.org/10.1609/aimag.v29i4.2198

