Workload Analysis to Establish the Ideal Staffing Level Using the Workload Analysis (WLA) Method (Case study of Manufacturing Design Engineering Production Laboratory, in Indonesia)

Emma Dwi Ariyani1*, Achmad Muhammad2, Nabila Hikmatus Sya’diah3, Supriyadi Sadikin4, & Yeni Latipah5
1,2,3,4,5
Department of Engineering Technology Management, Faculty of Mechanical Engineering, Politeknik Manufaktur Bandung, Indonesia
* Corresponding author: emma@polman-bandung.ac.id
DOI – http://doi.org/10.37502/IJSMR.2024.71110

Full Text – PDF

Abstract

As a pivotal unit in manufacturing process, the Manufacturing Design Engineering Laboratory plays a critical role in the beginning of manufacturing, dealing with the process of designing and developing new products. Hence, assessing the workload perceived by the employees of Manufacturing Design Engineering Laboratory is significant to ensure the optimal number of workers as a way to maintain the productivity and efficiency of manufacturing process. In this study, there are five areas of expertise (KBK) of Manufacturing Design Engineering Laboratory which were evaluated namely Press Tool, Moulding, Jig & Fixture, Metrology, and General Mechanic. By applying workload analysis method, the five expertise were measured based on their workload and other correlated aspects called performance rating and allowance.  The Findings show that the average workload for employees in the Press Tool Expertise Area is 91.42%, with an optimal number of 4 employees. Meanwhile, in the Moulding Expertise Area, the average employee workload is 68.2%, with an optimal number of 2 employees. In the Jig & Fixture Expertise Area, the average employee workload is 62.65%, with an optimal number of 2 employees. In the Metrology Expertise Area, the average employee workload is 87.96%, with an optimal number of 3 employees. Lastly, in the General Mechanic Expertise Area, the average employee workload is 90.24%, with an optimal number of 7 employees. Five more workers are needed, bringing the total from 13 to 18, in light of the task difficulties that have been discovered. Even after the number of employees has been established, changes like a fair workload division need to be made.

Keywords: Workload, Manufacturing Design Engineering Laboratory, Workload Analysis (WLA), Total Workforce.

References

  • Ahmad A. et. al. (2023). Workload Analysis to Determine the Optimal Number of Workforce Using the Workload Analysis Method at PT. Harapan Jaya Multi Bisnis. Jurnal Opsi 16(2), 241-249. https://doi.org/10.31315/opsi.v16i2.8967
  • Boomer, S. C., & Fendley, M. (2018) A theoretical framework for evaluating mental workload resources in human systems design for manufacturing operations. International Journal of Industrial Ergonomics63, pp.7-17. DOI: http://dx.doi.org/10.1016/j.ergon.2016.10.007
  • Budaya, P. W. & Muhsin, A. (2018). Workload Analysis in Quality Control Department. Jurnal Opsi 11(2). DOI: https://doi.org/10.31315/opsi.v11i2.2554
  • Diniaty (2016) Analisis Beban kerja Fisik dan Mental Karyawan Pada Lantai Produksi Dipt Pesona Laut Kuning, Jurnal Sains Teknologi dan Industri, vol. 13, 2016.
  • Gaspersz, V. (2011). Lean Six Sigma for manufacturing and service industries: Waste elimination and continous cost reduction. Bogor: Vinchristo Publication.
  • Hanjani, A. R. & Singgih, M. L. (2019). Workload Analysis at Biro Human Capital to Increase Productivity. IPTEK Journal of Proceedings Series 5, 2019, 404-415.
  • Hasibuan, M. (2019). Manajemen Sumber Daya Manusia : Edisi Revisi. Jakarta: Bumi Aksara.
  • Hidayat, A. N., & Sutopo, W. (2021). Workload Analysis to Optimize Productivity of The Inspection Division. Proceedings of the Second Asia Pacific International Conference on Industrial Engineering and Operations Management, 2021, 2475-2483.
  • Irawan, A. & Leksono, A. B. (2021). Analisis Beban Kerja Pada Departemen Quality Control. Jurnal INTECH Teknik Industri Universitas Serang Raya, Vol 7(1), 1-6.
  • Kurniawan, H., Yulianah, & Shaura, R. K. (2022). Workload Analysis Using the Full Time Equivalent (FTE) Method to Optimizing Labor. Enrichment: Journal of Management 12(4), 3058-3066.
  • Pattiapon, M. L., Maitimu, N. E., & Magdalena, I. (2020). Penerapan Lean Manufacturing guna Meminimasi Waste pada Lantai Produksi. ARIKA, 14(1), 23-36. https://doi.org/10.30598/arika.2020.14.1.23.
  • Mijatović, M. D., Uzelac, O. & Stoiljković, A. (2020). Effects of human resources management on the manufacturing firm performance: Sustainable development approach. International Journal of Industrial Engineering and Management 11(3), 205-2011. DOI: http://doi.org/10.24867/IJIEM-2020-3-26
  • Putra, S., Handoko, F., & Haryanto, S. (2020). Analisis Beban Kerja Menggunakan Metode Workload Analysis dalam Penentuan Jumlah Tenaga Kerja yang Optimal di CV. Jaya Perkasa Teknik, Kota Pasuruan. Jurnal Valtech (Jurnal Mahasiswa Teknik Industri), 3(2), 82-85.
  • Reid, D. and Sanders, N. (2013). Operations Management: An Integrated Approach. Hoboken, USA: John Wiley & Sons, Inc.
  • Soleman, A (2011). Analisis Beban Kerja Ditinjau dari Faktor Usia Dengan Pendekatan Recommended Weight Limit (Studi Kasus Mahasiswa Unpatti Poka). Arika,5, no.2, 83-89.
  • Sutalaksana, I. (2006). Teknik Perancangan Sistem Kerja, Bandung: ITB.
  • Wibawa, R.P.N.,Sugiono & Efranto, R. Y. (2014) Workload Analysis Using Workload Analysis Method for Workers Incentives Consideration (A Case Study in PPIE Department of PT Barata Indonesia (Persero) Gresik). Jurnal Rekayasa dan Manajemen Sistem Industri, vol.2, no.3, 672-683.
  • Wignjosoebroto, S. (2003). Pengantar Teknik & Manajemen Industri, Surabaya: Guna Widya.