Key Barriers for Bioenergy Projects Implementation: A fresh insight from Ghana

John Wiredu1*, Qian Yang1, Agyemang Kwasi Sampene2, Fitzgerald Kwaku Shams3, Adeline Nishimwe1, Fredrick Oteng Agyeman2, Andrews Awuah4
1
School of Management, Northwestern Polytechnical University, Shaanxi, Xi’an, 710070, China.
2
School of Management, Jiangsu University, Zhenjiang, Jiangsu – 212013, China.
3
School of Automation, Northwestern Polytechnical University, Shaanxi, Xi’an, 710070, China.
4
School of Management, Nanjing University of Information Science and Technology, Nanjing, China
DOI –
http://doi.org/10.37502/IJSMR.2022.5418

Abstract

This current study examines the barriers linked to the supply of bioenergy implementation projects in Ghana. This present study aims to provide an empirical analysis into the barriers to the supply of bioenergy implementation in Ghana and the stringent measures to put in place to mitigate such obstacles. This study utilizes both case study and survey approaches to achieve the research objective. We received 433 respondents from 433 high-ranking staff through questionnaires and expert interviews. Pearson correlation, as well as multiple regression analysis, were employed in this study. The empirical outcome of our research revealed that bioenergy implementation is affected by key barriers such as financial facilities, technical know-how, research data, proper legal framework, and political will. The study suggests that political decisions supporting acceptance and implementation, training and mental ability building, flexible funding mechanisms, and dissemination plans are needed if bioenergy production is to help societies. Also, legislative reform must form a legal framework to protect entrepreneurs and investors willing to invest in bioenergy projects. The contemporary study will help the government endeavor to include bioenergy shareholders in their policy development to integrate the industry’s viewpoint into the process.

Keywords: Bioenergy; barriers; implementations; Pearson correlation analysis; technology policies; biomass.

References

  • Adekeye, D. O. (2019). Rethinking growth and neo-liberalization development models in Africa: towards a sustainable environmental ethics. IOP Conference Series: Earth and Environmental Science, 331(1), 12026.
  • Afolabi, O. O. D., Leonard, S. A., Osei, E. N., & Blay, K. B. (2021). Country-level assessment of agrifood waste and enabling environment for sustainable utilisation for bioenergy in Nigeria. Journal of Environmental Management, 294, 112929.
  • Agyekum, E. B. (2020). Energy poverty in energy rich Ghana: A SWOT analytical approach for the development of Ghana’s renewable energy. Sustainable Energy Technologies and Assessments, 40, 100760.
  • Aha, B., & Ayitey, J. Z. (2017). Biofuels and the hazards of land grabbing: Tenure (in) security and indigenous farmers’ investment decisions in Ghana. Land Use Policy, 60, 48–59.
  • Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(1), 1–15.
  • Amevenku, F., Yeboah, K. K., & Obuobie, E. (2019). An Assessment of the IFTC Outgrower Scheme in Ghana. Gates Open Res, 3(933), 933.
  • Antwi, E. K., Boakye-Danquah, J., Owusu, A. B., Loh, S. K., Mensah, R., Boafo, Y. A., & Apronti, P. T. (2015). Community vulnerability assessment index for flood prone savannah agro-ecological zone: A case study of Wa West District, Ghana. Weather and Climate Extremes, 10, 56–69.
  • Banks, F. E. (2015). ENERGY ECONOMICS: A MODERN FIRST COURSE©. Process.
  • Bawakyillenuo, S., Crentsil, A. O., Agbelie, I. K., Danquah, S., Boakye-Danquah, E. B., & Menyeh, B. O. (2021). The landscape of energy for cooking in Ghana: A review.
  • Bello, H. (2020). Sustainable energy delivery models for off grid rural areas of Nigeria.
  • Boafo-Mensah, G., Neba, F. A., Tornyeviadzi, H. M., Seidu, R., Darkwa, K. M., & Kemausuor,
  • (2021). Modelling the performance potential of forced and natural-draft biomass cookstoves using a hybrid Entropy-TOPSIS approach. Biomass and Bioenergy, 150, 106106.
  • Chiaramonti, D., & Goumas, T. (2019). Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II. Applied Energy, 251, 113351.
  • Coelho, S. T., Sanches-Pereira, A., Tudeschini, L. G., & Goldemberg, J. (2018). The energy transition history of fuelwood replacement for liquefied petroleum gas in Brazilian households from 1920 to 2016. Energy Policy, 123, 41–52.
  • Commission, E. (2020). National Energy Statistics 2000–2019. Strategic Planning and Policy Directorate. Accra, Ghana.
  • Commission, G. E. (2020). National Energy Statistics, 20 0 0–2019. Ghana Energy Commission, Accra, Ghana.
  • Diouf, B., & Miezan, E. (2019). The biogas initiative in developing countries, from technical potential to failure: the case study of Senegal. Renewable and Sustainable Energy Reviews, 101, 248–254.
  • Eduku, J. (2017). The Effects of Offshore Oil and Gas Operations on the Socioeconomic Life of Ghanaians: A Case of the People of Ellembelle District in the Western Region of Ghana.
  • Edwards, J., Othman, M., & Burn, S. (2015). A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renewable and Sustainable Energy Reviews, 52, 815–828.
  • Elum, Z. A., Modise, D. M., & Nhamo, G. (2017). Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria. Environmental Science and Pollution Research, 24(4), 3260–3273.
  • Epstein, M. J., Elkington, J., & Herman, B. (2018). Making sustainability work: Best practices in managing and measuring corporate social, environmental and economic impacts. Routledge.
  • Gabienu, F. (2012). Critical factors in bioenergy implementation in Ghana.
  • Gagné, M., & Fent, A. (2021). The faltering land rush and the limits to extractive capitalism in Senegal. In The transnational land rush in Africa (pp. 55–85). Springer.
  • Geels, F. W., & Johnson, V. (2018). Towards a modular and temporal understanding of system diffusion: Adoption models and socio-technical theories applied to Austrian biomass district-heating (1979–2013). Energy Research & Social Science, 38, 138–153.
  • Gyamfi, S., Derkyi, N. S. A., Asuamah, E. Y., & Aduako, I. J. A. (2018). Renewable energy and sustainable development. In Sustainable Hydropower in West Africa (pp. 75–94). Elsevier.
  • Harman, H. H. (1976). Modern factor analysis. University of Chicago press.
  • Harris, R. M. B., Loeffler, F., Rumm, A., Fischer, C., Horchler, P., Scholz, M., Foeckler, F., & Henle, K. (2020). Biological responses to extreme weather events are detectable but difficult to formally attribute to anthropogenic climate change. Scientific Reports, 10(1), 1– 14.
  • How, B. S., Ngan, S. L., Hong, B. H., Lam, H. L., Ng, W. P. Q., Yusup, S., Ghani, W. A. W. A. K., Kansha, Y., Chan, Y. H., & Cheah, K. W. (2019). An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges. Renewable and Sustainable Energy Reviews, 113, 109277.
  • Hu, X., & Gholizadeh, M. (2019). Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, 39, 109–143.
  • Indrawan, N., Kumar, A., Moliere, M., Sallam, K. A., & Huhnke, R. L. (2020). Distributed power generation via gasification of biomass and municipal solid waste: A review. Journal of the Energy Institute, 93(6), 2293–2313.
  • Kabyanga, M., Balana, B. B., Mugisha, J., Walekhwa, P. N., Smith, J., & Glenk, K. (2018). Economic potential of flexible balloon biogas digester among smallholder farmers: A case study from Uganda. Renewable Energy, 120, 392–400.
  • Kemausuor, F., Nygaard, I., & Mackenzie, G. (2015). Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model. Energy, 93, 672–682.
  • Kitheka, E., Kimiti, J. M., Oduor, N., Mutinda, J. W., Ingutia, C., & Githiomi, J. (2019). Factors influencing adoption of biomass energy conservation technologies in selected areas of Kitui County, Kenya.
  • Klagge, B., & Nweke-Eze, C. (2020). Financing large-scale renewable-energy projects in Kenya: investor types, international connections, and financialization. Geografiska Annaler: Series B, Human Geography, 102(1), 61–83.
  • Kumar, S., Martin, F., Budhrani, K., & Ritzhaupt, A. (2019). Award-winning faculty online teaching practices: Elements of award-winning courses. Online Learning, 23(4), 160–180.
  • Lal, R., Bouma, J., Brevik, E., Dawson, L., Field, D. J., Glaser, B., Hatano, R., Hartemink, A. E., Kosaki, T., & Lascelles, B. (2021). Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional, 25, e00398.
  • Lebel, T., Parker, D. J., Flamant, C., Bourlès, B., Marticorena, B., Mougin, E., Peugeot, C., Diedhiou, A., Haywood, J. M., & Ngamini, J.-B. (2010). The AMMA field campaigns: multiscale and multidisciplinary observations in the West African region. Quarterly Journal of the Royal Meteorological Society, 136(S1), 8–33.
  • Leong, W.-H., Lim, J.-W., Lam, M.-K., Uemura, Y., & Ho, Y.-C. (2018). Third generation biofuels: a nutritional perspective in enhancing microbial lipid production. Renewable and Sustainable Energy Reviews, 91, 950–961.
  • Lima, M. G. B. (2021). The Politics of Bioeconomy and Sustainability: Lessons from Biofuel Governance, Policies and Production Strategies in the Emerging World. Springer Nature.
  • McCollum, D., Gomez Echeverri, L., Riahi, K., & Parkinson, S. (2017). Sdg7: Ensure access to affordable, reliable, sustainable and modern energy for all.
  • Mensah, G. S., Kemausuor, F., & Brew-Hammond, A. (2014). Energy access indicators and trends in Ghana. Renewable and Sustainable Energy Reviews, 30, 317–323.
  • Moghtaderi, B., Sheng, C., & Wall, T. F. (2006). An overview of the Australian biomass resources and utilization technologies. BioResources, 1(1), 93–115.
  • Nevzorova, T., & Kutcherov, V. (2019). Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Reviews, 26, 100414.
  • Nienow, S., McNamara, K. T., Gillespie, A. R., & Preckel, P. V. (1999). A model for the economic evaluation of plantation biomass production for co-firing with coal in electricity production. Agricultural and Resource Economics Review, 28(1), 106–117.
  • Nikolaidis, P. (2021). Sustainable Routes for Renewable Energy Carriers in Modern Energy Systems. In Bioenergy Research: Commercial Opportunities & Challenges (pp. 239–265). Springer.
  • Odoi-Yorke, F. (2018). Design of Solar PV-Biogas Hybrid Power System for Rural Electrification in Ghana. PAUWES.
  • Offei, F., Koranteng, L. D., & Kemausuor, F. (2021). Integrated bioethanol and briquette recovery from rice husk: a biorefinery analysis. Biomass Conversion and Biorefinery, 1–17.
  • Perea-Moreno, M.-A., Samerón-Manzano, E., & Perea-Moreno, A.-J. (2019). Biomass as renewable energy: Worldwide research trends. Sustainability, 11(3), 863.
  • Präger, F., Paczkowski, S., Sailer, G., Derkyi, N. S. A., & Pelz, S. (2019). Biomass sources for a sustainable energy supply in Ghana–A case study for Sunyani. Renewable and Sustainable Energy Reviews, 107, 413–424.
  • Ramirez-Contreras, N. E., & Faaij, A. P. C. (2018). A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia. Renewable and Sustainable Energy Reviews, 96, 460–478.
  • Sansaniwal, S. K., Rosen, M. A., & Tyagi, S. K. (2017). Global challenges in the sustainable development of biomass gasification: An overview. Renewable and Sustainable Energy Reviews, 80, 23–43.
  • Shane, A., Gheewala, S. H., & Phiri, S. (2017). Rural domestic biogas supply model for Zambia.
  • Renewable and Sustainable Energy Reviews, 78, 683–697.
  • Stanturf, J. A., & Mansourian, S. (2020). Forest landscape restoration: state of play. Royal Society Open Science, 7(12), 201218.
  • Tareen, W. U. K., Dilbar, M. T., Farhan, M., Ali Nawaz, M., Durrani, A. W., Memon, K. A., Mekhilef, S., Seyedmahmoudian, M., Horan, B., & Amir, M. (2020). Present status and potential of biomass energy in Pakistan based on existing and future renewable resources. Sustainability, 12(1), 249.
  • Twinomunuji, E., Kemausuor, F., Black, M., Roy, A., Leach, M., Sadhukhan, R. O. J., & Murphy, R. (2020). The potential for bottled biogas for clean cooking in Africa. Modern Energy Cooking Services (MECS). Surrey, UK.
  • Ullah, S., Noor, R. S., & Gang, T. (2021). Analysis of biofuel (briquette) production from forest biomass: a socioeconomic incentive towards deforestation. Biomass Conversion and Biorefinery, 1–15.
  • Wright, B. (2016). A critical assessment of botanical indicators as historic markers in wooded landscapes. Sheffield Hallam University (United Kingdom).